精英家教网 > 初中数学 > 题目详情

如图,在直角坐标系中,抛物线y=x2-x-2过A、B、C三点,在对称轴上存在点P,以P、A、C为顶点三角形为直角三角形.则点P的坐标是________.

)或(,-)或(,-)或(,-
分析:根据抛物线解析式求出对称轴为x=,令y=0,解方程求出点A、B的坐标,从而得到OA、OB的长度,令x=0,求出点C的坐标,从而得到OC的长度,然后分①∠PAC=90°时,设PA与y轴的交点为D,根据相似三角形对应边成比例列式求出OD的长度,从而得到点D的坐标,利用待定系数法求出直线AP的解析式,然后根据点P在对称轴上求出即可,②∠PCA=90°时,设CP的延长线与x轴相交于点D,根据相似三角形对应边成比例列式求出OD的长度,从而得到点D的坐标,利用待定系数法求出直线CP的解析式,然后根据点P在对称轴上求出即可,③∠APC=90°时,设抛物线对称轴与x轴相交于点D,过点C作CE⊥PD于点E,表示出AD的长度,设PD=a,表示出PE,CE,然后利用△APD和△PCE相似,根据相似三角形对应边成比例列式求出a,即可得到点P的坐标.
解答:∵抛物线y=x2-x-2=(x-2-
∴抛物线的对称轴为直线x=
令y=0,则x2-x-2=0,
解得x1=-1,x2=2,
∴点A(-1,0),B(2,0),
∴OA=1,OB=2,
令x=0,则y=-2,
∴点C(0,-2),
∴OC=2,
①∠PAC=90°时,如图1,设PA与y轴的交点为D,
∵∠DAO+∠CAO=90°,∠CAO+∠ACO=90°,
∴∠DAO=∠ACO,
又∵∠AOC=∠DOA=90°,
∴△ACO∽△DAO,
=
=
解得OD=
所以,点D(0,),
设直线AP解析式为y=kx+b,

解得
所以,直线AP的解析式为y=x+
当x=时,y=×+=
所以,点P的坐标为();
②∠PCA=90°时,如图2,设CP的延长线与x轴相交于点D,
同①可求△ACO∽△CDO,
所以,=
=
解得OD=4,
所以,点D(4,0),
设直线CP的解析式为y=mx+n,

解得
所以,直线CP的解析式为y=x-2,
当x=时,y=×-2=-
所以,点P的坐标为(,-);
③∠APC=90°时,如图3,设抛物线对称轴与x轴相交于点D,过点C作CE⊥PD于点E,
∵抛物线对称轴为直线x=
∴AD=-(-1)=,CE=
设PD=a,则PE=PE-PD=OC-PD=2-a,
∵∠PAD+∠APD=90°,∠APD+∠CPE=90°,
∴∠PAD=∠CPE,
又∵∠ADP=∠PEC=90°,
∴△APD∽△PCE,
=
=
整理得,4a2-8a+3=0,
解得a1=,a2=
所以,点P的坐标为(,-)或(,-),
综上所述,点P的坐标为()或(,-)或(,-)或(,-).
故答案为:()或(,-)或(,-)或(,-).
点评:本题是二次函数综合题型,主要考查了抛物线对称轴的求解,抛物线与坐标轴的交点的求解,相似三角形的判定与性质,待定系数法求直线解析式,综合性较强,但难度不大,注意分情况讨论求解即可.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

18、如图,在直角坐标系中,已知点A(-3,0),B(0,4),对△OAB连续作旋转变换,依次得到三角形①、②、③、④…,则三角形⑦的直角顶点的坐标为
(24,0)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在直角坐标系中,点P的坐标为(3,4),将OP绕原点O逆时针旋转90°得到线段OP′.
(1)在图中画出线段OP′;
(2)求P′的坐标和
PP′
的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系中,O为原点.反比例函数y=
6
x
的图象经过第一象限的点A,点A的纵坐标是横坐标的
3
2
倍.
(1)求点A的坐标;
(2)如果经过点A的一次函数图象与x轴的负半轴交于点B,AC⊥x轴于点C,若△ABC的面积为9,求这个一次函数的解析式.
(3)点D在反比例函数y=
6
x
的图象上,且点D在直线AC的右侧,作DE⊥x轴于点E,当△ABC与△CDE相似时,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系中,△ABC的三个顶点的坐标分别为A(-6,0),B(-4,6),C(0,2).画出△ABC的两个位似图形△A1B1C1,△A2B2C2,同时满足下列两个条件:
(1)以原点O为位似中心;
(2)△A1B1C1,△A2B2C2与△ABC的面积比都是1:4.(作出图形,保留痕迹,标上相应字母)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系中,已知点A(-4,0),B(0,3),对△OAB连续作旋转变换,依次得到三角形(1),三角形(2),三角形(3),三角形(4),…,

(1)△AOB的面积是
6
6

(2)三角形(2013)的直角顶点的坐标是
(8052,0)
(8052,0)

查看答案和解析>>

同步练习册答案