精英家教网 > 初中数学 > 题目详情

如图所示,在Rt△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线,CD=5cm,求AB的长.

解:∵∠C=90°,∠A=30°,
∴∠ABC=180°-∠A-∠C=60°,
∵BD是∠ABC的平分线,
∴∠CBD=∠ABC=30°,
即在Rt△BCD中,∠CBD=30°,
∴BD=2CD=10cm(含30度角的直角三角形的性质),
由勾股定理得:BC==5cm,
∵∠A=30°,∠C=90°,
∴AB=2BC=10cm,
答:AB的长是10cm.
分析:求出∠ABC,求出∠CBD=30°,求出BD值,根据勾股定理求出BC,根据含30度角的直角三角形性质求出AB=2BC,代入求出即可.
点评:本题考查了三角形的内角和定理,含30度角的直角三角形,勾股定理的应用,关键是求出BC的值和得出AB=2BC,题目具有一定的代表性,难度也适中,是一道比较好的题目.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图所示,在Rt△ABC中,∠A=90°,BD平分∠ABC,交AC于点D,且AB=4,BD=5,则点D到BC的距离是(  )
A、3B、4C、5D、6

查看答案和解析>>

科目:初中数学 来源: 题型:

21、如图所示,在Rt△ABC中,∠ACB=90°,CD⊥AB,∠A=55°,则∠DCB=
55
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

22、如图所示,在Rt△ABC中,∠C=90°,∠A=30°.作AB的中垂线l分别交AB、AC及BC的延长线于点D、E、F,连接BE. 求证:EF=2DE.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在Rt△ABC中,∠C=90°,AC=6,sinB=
3
5
,若以C为圆心,R为半径所得的圆与斜边AB只有一个公共点,则R的取值范围是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在Rt△ABC中,AD平分∠BAC,交BC于D,CH⊥AB于H,交AD于F,DE⊥AB垂足为E,求证:四边形CFED是菱形.

查看答案和解析>>

同步练习册答案