精英家教网 > 初中数学 > 题目详情
如图,已知AB是⊙O的直径,直线CD与⊙O相切于点C,AC平分∠DAB.
(1)试说明:AD⊥DC;
(2)若AD=1,AC=,求AB的长.
(1)说明见解析;(2)

试题分析:(1)连接OC,根据CD与⊙O相切,所以OC⊥CD,再由OA=OC,得出∠2=∠3,根据AC平分∠DAB,则∠2=∠1,等量代换得出∠3=∠1,从而得出AD∥OC,所以∠ADC=∠OCE=90°,即AD⊥DC.
(2)连接BC.根据AB是⊙O的直径,所以∠ACB=90°,由(1)得出∠2=∠1,则△ACD∽△ABC,从而得出,即AC2=AD•AB,得出AB即可.
(1)连接OC,

∵CD与⊙O相切,
∴OC⊥CD,
∴∠OCE=90°,
∵OA=OC,
∴∠2=∠3,
∵AC平分∠DAB,
∴∠2=∠1,
∴∠3=∠1,
∴AD∥OC,
∴∠ADC=∠OCE=90°,
∴AD⊥DC.
(2)连接BC.
∵AB是⊙O的直径,
∴∠ACB=90°=∠ADC,
∵∠3=∠1,
∴△ACD∽△ABC,

∴AC2=AD•AB,
∴AB=(2=
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,已点A(6,0),点B(0,6),动点C在以半径为3的⊙O上,连接OC,过D作OD⊥OC,OD与⊙O相交于点D(其中点C、D按顺时针方向排列),连接AB.
(1)当OC//AB时,∠BOC的度数为   
(2)连接AC、BC,当点C在⊙O上运动到什么位置时,△ABC的面积最大?并求出△ABC的面积的最大值.
(3)连接AD,当OC//AD时,
①求出点C的坐标;
②直线BC是否为⊙O的切线?请作出判断,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB是⊙O的直径,点E是上一点,∠DAC=∠AED.
(1)求证:AC是⊙O的切线;
(2) 若点E是的中点,连结AE交BC于点F,当BD=5,  CD=4时,求DF的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,AB是⊙O的弦,OC是⊙O的半径,OC⊥AB于点D,若 AB=,OD=3,则⊙O的半径等于
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在⊙O中,CD是直径,弦ABCD,垂足为E,连接BC,若AB=cm,,则圆O的半径为       cm.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在矩形ABCD中,AB=2DA,以点A为圆心,AB为半径的圆弧交DC于点E,交AD的延长线于点F,设DA=2,图中阴影部分的面积为           。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

课本回顾
如图,用半径R=3cm,r=2cm的钢球测量口小内大的内孔的直径D.测得钢球顶点与孔口平面的距离分别为a=4cm,b=2cm,则内孔直径D的大小为     
问题拓展
如图,在矩形ABCD内,已知⊙O1与⊙O2互相外切,且⊙O1与边AD、DC相切,⊙O2与边AB、BC相切.若AB=4,BC=3,⊙O1与⊙O2的半径分别为r,R.求O1O2的值.
灵活运用
如图,某市民广场是半径为60米,圆心角为90°的扇形AOB,广场中两个活动场所是圆心在OA、OB上,且与扇形OAB内切的半圆☉O1☉O2,其余为花圃.若这两个半圆相外切,试计算当两半圆半径之和为50米时活动场地的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

圆锥的高是4cm,母线长5cm,则其侧面展开图的面积为(  )
A.30πcm2B.24πcm2C.15πcm2D.18πcm2

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知扇形的圆心角为120°,半径为3,扇形的周长为    .

查看答案和解析>>

同步练习册答案