精英家教网 > 初中数学 > 题目详情
如图,已知抛物线y=(3-m)x2+2(m-3)x+4m-m2的顶点A在双曲线y=
3x
上,直线y=mx+b精英家教网经过点A,与y轴交于点B,与x轴交于点C.
(1)确定直线AB的解析式;
(2)将直线AB绕点O顺时针旋转90°,与x轴交于点D,与y轴交于点E,求sin∠BDE的值;
(3)过点B作x轴的平行线与双曲线交于点G,点M在直线BG上,且到抛物线的对称轴的距离为6.设点N在直线BG上,请直接写出使得∠AMB+∠ANB=45°的点N的坐标.
分析:(1)由抛物线解析式得顶点坐标为(1,-m2+5m-3),代入双曲线y=
3
x
中,可求m的值,再把A点坐标代入直线y=mx+b中,确定直线AB的解析式;
(2)由旋转的性质可知,OD=OB,OE=OC,根据B、D、E三点坐标,作EH⊥BD,垂足为H,可知△BEH为等腰直角三角形,分别求EH,DE,再求sin∠BDE的值;
(3)即△AMN的顶点A的外角为45°,过M点作直线AN的垂线,得到等腰直角三角形,根据等腰直角三角形的性质求N点坐标.
解答:解:(1)∵抛物线对称轴x=-
2(m-3)
2(3-m)
=1,
∴抛物线顶点坐标为(1,-m2+5m-3),
代入双曲线y=
3
x
中,得,-m2+5m-3=3,
解得m=2或3,
∵二次项系数3-m≠0,
∴m=2,
∴A(1,3),把A点代入直线y=2x+b中,得b=1,
∴直线AB的解析式为y=2x+1;

精英家教网(2)由直线AB解析式可知OB=1,OC=
1
2

由旋转的性质可知,OD=OB=1,OE=OC=
1
2

作EH⊥BD,垂足为H,∵∠OBD=45°,
∴△BEH为等腰直角三角形,
又∵BE=OB-OE=
1
2

∴EH=
BE
2
=
2
4

在Rt△ODE中,DE=
OE2+OD2
=
(
1
2
)
2
+12
=
5
2

∴sin∠BDE=
EH
DE
=
2
4
5
2
=
10
10


(3)N点坐标为(5,1)或(-3,1).
点评:本题考查了二次函数的综合运用.关键是根据条件确定抛物线和直线AB的解析式,根据旋转的性质,三角形外角的性质解题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知抛物线与x轴交于A(-1,0)、B(4,0)两点,与y轴交于点精英家教网C(0,3).
(1)求抛物线的解析式;
(2)求直线BC的函数解析式;
(3)在抛物线上,是否存在一点P,使△PAB的面积等于△ABC的面积,若存在,求出点P的坐标,若不存在,请说明理由.
(4)点Q是直线BC上的一个动点,若△QOB为等腰三角形,请写出此时点Q的坐标.(可直接写出结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(-1,0)精英家教网、C(0,-3)两点,与x轴交于另一点B.
(1)求这条抛物线所对应的函数关系式;
(2)在抛物线的对称轴x=1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求出此时点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•衡阳)如图,已知抛物线经过A(1,0),B(0,3)两点,对称轴是x=-1.
(1)求抛物线对应的函数关系式;
(2)动点Q从点O出发,以每秒1个单位长度的速度在线段OA上运动,同时动点M从O点出发以每秒3个单位长度的速度在线段OB上运动,过点Q作x轴的垂线交线段AB于点N,交抛物线于点P,设运动的时间为t秒.
①当t为何值时,四边形OMPQ为矩形;
②△AON能否为等腰三角形?若能,求出t的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,且抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B.
(1)求这条抛物线所对应的函数关系式;
(2)点P是抛物线对称轴上一点,若△PAB∽△OBC,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c的顶点是(-1,-4),且与x轴交于A、B(1,0)两点,交y轴于点C;
(1)求此抛物线的解析式;
(2)①当x的取值范围满足条件
-2<x<0
-2<x<0
时,y<-3;
     ②若D(m,y1),E(2,y2)是抛物线上两点,且y1>y2,求实数m的取值范围;
(3)直线x=t平行于y轴,分别交线段AC于点M、交抛物线于点N,求线段MN的长度的最大值;
(4)若以抛物线上的点P为圆心作圆与x轴相切时,正好也与y轴相切,求点P的坐标.

查看答案和解析>>

同步练习册答案