精英家教网 > 初中数学 > 题目详情
如图,已知直线y=2x+2交y轴于点A,交x轴于点B,直线l:y=-3x+9
(1)求经过A、B、C三点的抛物线的函数关系式,并指出此函数的函数值随x的增大而增大时,x的取值范围;
(2)若点E在(1)中的抛物线上,且四边形ABCE是以BC为底的梯形,求梯形ABCE的面积;
(3)在(1)、(2)的条件下,过E作直线EF⊥x轴,垂足为G,交直线l于F.在抛物线上是否存在点H,使直线l、FH和x轴所围成的三角形的面积恰好是梯形ABCE面积的
1
2
?若存在,求点H的横坐标;若不存在,请说明理由.
(1)∵直线AB的解析式为y=2x+2,
∴点A、B的坐标分别为A(0,2)、B(-1,0);
又直线l的解析式为y=-3x+9,∴点C的坐标为(3,0).
由上,可设经过A、B、C三点的抛物线的解析式为y=a(x+1)(x-3),将点A的坐标代入,得:a=-
2
3

∴抛物线的解析式为y=-
2
3
x2+
4
3
x+2,
∴抛物线的对称轴为x=1;
由于抛物线的开口向下,所以函数值随x的增大而增大时,x的取值范围是x≤1.

(2)过A作AEBC,交抛物线于点E;显然,点A、E关于直线x=1对称,
∴点E的坐标为E(2,2);
故梯形ABCE的面积为 S=
1
2
(2+4)×2=6.

(3)假设存在符合条件的点H,作直线FH交x轴于M;
由题意知,S△CFM=3,设F(m,n),易知m=2;
将F(2,n)的坐标代入y=-3x+9中,可求出n=3,则FG=3;
∴S△CFM=
1
2
FG•CM=3,∴CM=2.
由C(3,0)知,M1(1,0)、M2(5,0),
设FM的解析式为y=kx+b:
由M1(1,0)、F(2,3)得,FM1解析式为y=3x-3,则FM1与抛物线的交点H满足:
y=3x-3
y=-
2
3
x2+
4
3
x+2

整理得,2x2+5x-15=0,
∴x=
-5±
145
4

由M2(5,0)、F(2,3)得,FM2解析式为y=-x+5,则FM2与抛物线的交点H满足:
y=-x+5
y=-
2
3
x2+
4
3
x+2
,整理得,2x2-7x+9=0,
∵△<0,∴不符合题意,舍去;
即:H点的横坐标为
-5±
145
4
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知:抛物线y=-x2+(2m+2)x-(m2+4m-3)
(1)抛物线与x轴有两个交点,求m的取值范围;
(2)当m为不小于零的整数,且抛物线与x轴的两个交点是整数点时,求此抛物线的解析式;
(3)若设(2)中的抛物线的顶点为A,与x轴的两个交点中右侧的交点为B,M为y轴上一点,且MA=MB,求M的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=ax2+bx+c与y轴交于点C,与x轴交于点A(x1,0)、B(x2,0)(x1<x2),顶点M的纵坐标为-4,若x1、x2是方程x2-2(m-1)x+m2-7=0的两个根,且x21+x22=10.
(1)求A、B两点的坐标;
(2)求抛物线的解析式及点C的坐标;
(3)在抛物线上是否存在点P,使三角形PAB的面积等于四边形ACMB的面积的2倍?若存在,求出所有符合条件的点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y=-x2+bx+c与x轴的两个交点分别为Α(1,0),B(3,0),
(1)求此抛物线的解析式;
(2)设此抛物线的顶点为D,与y轴的交点为C,试求四边形ΑBCD的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

竖直向上发射物体的高度h(m)满足关系式h=-5t2+v0•t,其中t(s)是物体运动的时间,v0(m/s)是物体被发射时的速度.某公园计划设计园内喷泉,喷水的最大高度要求达到15m,那么喷水的速度应该达到多少?(结果精确到0.01m/s)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

对于三个数a,b,c,用max{a,b,c}表示这三个数中最大的数.例如:max{1,2,3}=3.则:
(1)max{sin30°,(
2
-1)0
,tan30°}=______;
(2)如果max{5,3x+2,3-2x}=5,则x的取值范围是______;
(3)max{x2+2,-x+4,x}的最小值为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某企业为打入国际市场,决定从A、B两种产品中只选择一种进行投资生产.已知投资生产这两种产品的有关数据如下表:(单位:万美元)
项目
类别
年固定
成本
每件产品
成本
每件产品
销售价
每年最多可
生产的件数
A产品20m10200
B产品40818120
其中年固定成本与年生产的件数无关,m为待定常数,其值由生产A产品的原材料价格决定,预计6≤m≤8.另外,年销售x件B产品时需上交0.05x2万美元的特别关税.假设生产出来的产品都能在当年销售出去.
(1)写出该厂分别投资生产A、B两种产品的年利润y1,y2与生产相应产品的件数x之间的函数关系并指明其自变量取值范围;
(2)如何投资才可获得最大年利润?请你做出规划.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

苹果熟了,从树上落下所经过的路程s与下落的时间t满足s=
1
2
gt2(g是不为0的常数),则s与t的函数图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,B是长度为1的线段AE上任意一点,在AE的同一侧分别作正方形ABCD和长方形BEFG,且EF=2BE.

(1)点B在何处时,正方形ABCD的面积与长方形BEFG的面积和最小,最小值为多少?
(2)若点C与点G重合,M为AB中点,N为EF中点,MN与BC交于点H(如图2所示),将△OMA沿直线DM,△MNE沿直线MN分别向矩形AEFD内折叠,求四边形DMNF未被两个折叠三角形覆盖的图形面积.

查看答案和解析>>

同步练习册答案