精英家教网 > 初中数学 > 题目详情
(2011•北京)如图,在平面直角坐标系xOy中,我把由两条射线AE,BF和以AB为直径的半圆所组成的图形叫作图形C(注:不含AB线段).已知A(﹣1,0),B(1,0),AE∥BF,且半圆与y轴的交点D在射线AE的反向延长线上.
(1)求两条射线AE,BF所在直线的距离;
(2)当一次函数y=x+b的图象与图形C恰好只有一个公共点时,写出b的取值范围;
当一次函数y=x+b的图象与图形C恰好只有两个公共点时,写出b的取值范围;
(3)已知?AMPQ(四个顶点A,M,P,Q按顺时针方向排列)的各顶点都在图形C上,且不都在两条射线上,求点M的横坐标x的取值范围.
解:(1)分别连接AD、DB,则点D在直线AE上,如图1,

∵点D在以AB为直径的半圆上,
∴∠ADB=90°,
∴BD⊥AD,
在Rt△DOB中,由勾股定理得,BD=
∵AE∥BF,
∴两条射线AE、BF所在直线的距离为
(2)当一次函数y=x+b的图象与图形C恰好只有一个公共点时,b的取值范围是b=或﹣1<b<1;
当一次函数y=x+b的图象与图形C恰好只有两个公共点时,b的取值范围是1<b<
(3)假设存在满足题意的平行四边形AMPQ,根据点M的位置,分以下四种情况讨论:
①当点M在射线AE上时,如图2.
∵AMPQ四点按顺时针方向排列,
∴直线PQ必在直线AM的上方,
∴PQ两点都在弧AD上,且不与点A、D重合,
∴0<PQ<
∵AM∥PQ且AM=PQ,
∴0<AM<
∴﹣2<x<﹣1,
②当点M不在弧AD上时,如图3,
∵点A、M、P、Q四点按顺时针方向排列,
∴直线PQ必在直线AM的下方,
此时,不存在满足题意的平行四边形.
③当点M在弧BD上时,
设弧DB的中点为R,则OR∥BF,
当点M在弧DR上时,如图4,
过点M作OR的垂线交弧DB于点Q,垂足为点S,可得S是MQ的中点.
∴四边形AMPQ为满足题意的平行四边形,
∴0≤x<
当点M在弧RB上时,如图5,
直线PQ必在直线AM的下方,
此时不存在满足题意的平行四边形.
④当点M在射线BF上时,如图6,
直线PQ必在直线AM的下方,
此时,不存在满足题意的平行四边形.
综上,点M的横坐标x的取值范围是
﹣2<x<﹣1或0≤x<
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

某电视厂要印刷产品宣传材料,甲印刷厂提出:每份材料收1.2元印刷费,另收1000元制版费,乙厂提出:每份材料收2元印刷费,不收制版费。
(1)分别写出两厂的收费y(元)与印制数量(份)之间的关系式;
甲厂的收费(元)与印刷数量(份)之间的关系式为                 。
乙厂的收费(元)与印刷数量(份)之间的关系式为                  。
(2)电视机厂拟拿出3000元用于印刷宣传材料,找哪家印刷厂印刷的宣传材料能多一些?
(3)印刷数量在什么范围时,在乙厂印刷合算?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

(2011•陕西)下列四个点,在正比例函数的图象上的点是(  )
A.(2,5)B.(5,2)
C.(2,﹣5)D.(5,﹣2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

北京时间2011年3月11日46分,日本东部海域发生9级强烈地震并引发海啸.在其灾区,某药品的需求量急增.如图所示,在平常对某种药品的需求量y1(万件).供应量y2(万件)与价格x(元∕件)分别近似满足下列函数关系式:,需求量为0时,即停止供应.当时,该药品的价格称为稳定价格,需求量称为稳定需求量.
(1)求该药品的稳定价格与稳定需求量.
(2)价格在什么范围内,该药品的需求量低于供应量?
(3)由于该地区灾情严重,政府部门决定对药品供应方提供价格补贴来提高供货价格,以提高供应量.根据调查统计,需将稳定需求量增加6万件,政府应对每件药品提供多少元补贴,才能使供应量等于需求量.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

一个装有进水管和出水管的容器,从某时刻起只打开进水管进水,经过一段时间,再打开出水管放水.至12分钟时,关停进水管.在打开进水管到关停进水管这段时间内,容器内的水量y(单位:升)与时间x(单位:分钟)之间的函数关系如图所示.关停进水管后,经过_____分钟,容器中的水恰好放完.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(9分)深圳某科技公司在甲地、乙地分别生产了17台、15台相同型号的检测设备,全部运往大运赛场A、B两馆,其中运往A馆18台,运往B馆14台,运往A、B两馆运费如表1:
(1)设甲地运往A馆的设备有x台,请填写表2,并求出总运费y(元)与x(台)的函数关系式;
(2)要使总运费不高于20200元,请你帮助该公司设计调配方案,并写出有哪几种方案;
(3)当x为多少时,总运费最少,最少为多少元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:计算题

已知直线与双曲线交于点P().
(1)求m的值;
(2)若点在双曲线上.且,试比较的大小.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

函数中,自变量的取值范围是              .

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,一次函数y=kx+b与反比例函数.(mk≠0)图像交于A(—4,2)B(2,n)两点。

(1)求一次函数和反比例函数的表达式;
(2)求△ABO的面积;
(3)当x取非零的实数时,试比较一次函数值与反比例函数值的大小

查看答案和解析>>

同步练习册答案