【题目】如图,抛物线y=mx2﹣4mx+2m+1与x轴交于A(x1,0),B(x2,0)两点,与y轴交于点C,且x2﹣x1=2.
(1)求抛物线的解析式;
(2)E是抛物线上一点,∠EAB=2∠OCA,求点E的坐标;
(3)设抛物线的顶点为D,动点P从点B出发,沿抛物线向上运动,连接PD,过点P做PQ⊥PD,交抛物线的对称轴于点Q,以QD为对角线作矩形PQMD,当点P运动至点(5,t)时,求线段DM扫过的图形面积.
【答案】(1);(2)(,﹣)或(,);(3)1.
【解析】
(1)根据抛物线的对称轴公式以及与x轴的交点坐标可得,又x2﹣x1=2,可求得x1=1,x2=3,由此可得A,B两点坐标.将A点坐标代入抛物线解析式可求得m的值,由此可得抛物线解析式;
(2)作MN垂直且平分线段AC,交y轴与点F,连接FA.可得∠OFA=2∠OCA,所以∠OFA=∠EAB,在Rt△OFA中表示∠OFA的正切值,分点E在x轴下方和x轴上方两种情况讨论,分别构造直角三角形表示∠EAB(∠E'AB)的正切值.根据相等角的正切值相等列出方程解方程即可;
(3)连接AD,过P作PS⊥QD于点S,作PH⊥x轴于点H,过B作BI∥QD,交PS于点I,先证明M的轨迹在x轴上,当P在B点时,M在A点.点P从点B出发沿抛物线向上运动时,M在A处沿x轴向左边运动.MD扫过的面积即S△MAD,求S△MAD即可.
解:(1)∵抛物线与x轴有两个交点A(x1,0),B(x2,0)
∴抛物线对称轴直线x===2
∴
又∵x2﹣x1=2
∴x1=1,x2=3
则点A(1,0),B(3,0)
把点A(1,0)代入y=mx2﹣4mx+2m+1中得,
m﹣4m+2m+1=0
解得,m=1
∴抛物线解析式为y=x2﹣4x+3
(2)如图①
作MN垂直且平分线段AC,交y轴与点F.连接FA,则∠OFA=2∠OCA
由MN垂直平分AC得FC=FA,设F(0,n),则OF=n,OA=1
在Rt△OAF中,由勾股定理得,AF==
∴FC=
∴OC=OF+FC=n+=3
∴=3﹣n
等式左右两边同时平方得,1+n2=(3﹣n)2
解得,n=
∴F(0,)
∴tan∠OFA===
①当抛物线上的点E在x轴下方时,作EG⊥x轴于点G,并使得∠EAB=∠OFA.
设点E(m,m2﹣4m+3),其中1<m<3,则tan∠EAB===
整理得,4m2﹣13m+9=0
解得,m1=,m2=1(舍去)
此时E点坐标为(,﹣);
②当抛物线上的点E'在x轴上方时,作E'H⊥x轴于点H,并使得∠E'AB=∠OFA.
设点E'(m,m2﹣4m+3),其中m>3,则tan∠E'AB===
整理得,4m2﹣19m+15=0
解得,m3=,m4=1(舍去)
此时E’点坐标为(,)
综上所述,满足题意的点E的坐标可以为(,﹣)或(,)
(3)如图②,
连接AD,过P作PS⊥QD于点S,作PH⊥x轴于点H,过B作BI∥QD,交PS于点I.
设QD⊥x轴于点T,DP与x轴交于点R.
∵在矩形PQMD中,MQ∥DP
∴∠QMH=∠MRD
又∵在△MDR中,∠MDR=90°
∴∠DMR+∠DRM=90°
又∵∠QMD=∠QMR+∠DMR=90°,R在x轴上
∴M恒在x轴上.
又∵PQ∥MD
∴∠PQS=∠MDT.
∴在△MTD与△PSQ中,
∴△MTD≌△PSQ(AAS)
∴MT=PS
又∵PS=TH
∴MT=TH
又∵AT=TB
∴MT﹣AT=TH﹣TB
即MA=BH.
又∵P点横坐标为5时,易得OH=5
∴BH=OH﹣OB=5﹣3=2
∴MA=2
又∵当P在B点时依题意作矩形PQMD,M在A点
由点P从点B由出发沿抛物线向上运动,易得M在A处沿x轴向左边运动.
∴MD扫过的面积即S△MAD
∴S△MAD=MATD=×2×1=1.
即线段DM扫过的图形面积为1.
科目:初中数学 来源: 题型:
【题目】城市中“打车难”一直是人们关注的一个社会热点问题.近几年来,“互联网+”战略与传统出租车行业深度融合,“优步”、“滴滴出行”等打车软件就是其中典型的应用,名为“数据包络分析”(简称DEA)的一种效率评价方法,可以很好地优化出租车资源配置,为了解出租车资源的“供需匹配”,北京、上海等城市对每天24个时段的DEA值进行调查,调查发现,DEA值越大,说明匹配度越好.在某一段时间内,北京的DEA值y与时刻t的关系近似满足函数关系(a,b,c是常数,且≠0),如图记录了3个时刻的数据,根据函数模型和所给数据,当“供需匹配”程度最好时,最接近的时刻t是( )
A. 4.8 B. 5 C. 5.2 D. 5.5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,利用一面墙(墙的长度不超过45m),用80m长的篱笆围一个矩形场地.
(1)怎样围才能使矩形场地的面积为750m2?
(2)能否使所围矩形场地的面积为810m2,为什么?
(3)怎样围才能使围出的矩形场地面积最大?最大面积为多少?请通过计算说明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,利用一面墙(墙的长度不超过45m),用80m长的篱笆围一个矩形场地.
(1)怎样围才能使矩形场地的面积为750m2?
(2)能否使所围矩形场地的面积为810m2,为什么?
(3)怎样围才能使围出的矩形场地面积最大?最大面积为多少?请通过计算说明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①a>0 ②2a+b=0 ③a+b+c>0 ④当﹣1<x<3时,y>0,其中正确的个数为( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△AOB中,∠AOB=90°,点A的坐标为(2,1),BO=2,反比例函数y=的图象经过点B,则k的值为( )
A.﹣2B.﹣4C.4D.﹣8
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校九年级某班学生准备去购买《英汉词典》一书,此书的标价为20元.现A、B两书店都有此书出售,A店按如下方法促销:若只购买1本,则按标价销售;当一次性购买多于1本,但不多于20本时,每多购买一本,每本的售价在标价的基础上优惠2%(例如,买2本每本的售价优惠2%,买3本每本的售价优惠4%,依此类推);当购买多于20本时,每本的售价为12元.B书店一律按标价的7折销售.
(1)试分别写出在两书店购买此书的总价yA、yB与购书本数之间的函数关系式.
(2)若该班一次购买多于20本,去哪家书店购买更合算?为什么?若要一次性购买不多于20本,先写出y(y=yA﹣yB)与购书本数x之间的函数关系式,画出其函数图象,再利用函数图象分析去哪家书店购买更合算.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=AC,∠A=60°,点D是线段BC的中点,∠EDF=120°,DE与线段AB相交于点E,DF与线段AC相交于点F.
(1)如图1,若DF⊥AC,垂足为F,AB=4,求BE的长;
(2)如图2,将(1)中的∠EDF绕点D顺时针旋转一定的角度,DF仍与线段AC相交于点F.
求证:BE+CF=AB.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com