精英家教网 > 初中数学 > 题目详情
在△ABC中,BC=9,AB的垂直平分线交BC与点M,AC的垂直平分线交BC于点N,则△AMN的周长=
9
9
分析:由直线PM为线段AB的垂直平分线,根据线段垂直平分线定理:线段垂直平分线上的点到线段两端点的距离相等可得AM=BM,同理可得AN=NC,然后表示出三角形AMN的三边之和,等量代换可得其周长等于BC的长,由BC的长即可得到三角形AMN的周长.
解答:
解:∵直线MP为线段AB的垂直平分线(已知),
∴MA=MB(线段垂直平分线上的点到线段两端点的距离相等),
又直线NQ为线段AC的垂直平分线(已知),
∴NA=NC(线段垂直平分线上的点到线段两端点的距离相等),
∴△AMN的周长l=AM+MN+AN=BM+MN+NC=BC(等量代换),
又BC=9,
则△AMN的周长为9.
故答案为:9
点评:此题考查了线段垂直平分线定理的运用,利用了转化的思想,熟练掌握线段垂直平分线定理是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在△ABC中,BC=5,AC=12,AB=13,在AB、AC上分别取点D、E,使线段DE将△ABC分成面积相等的两部分,则这样线段的最小值是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知AB⊥BC,CD⊥AD.
(1)在△ABC中,BC边上的高是线段
 

(2)若AB=3cm,CD=2cm,AE=4cm,则S△AEC=
 
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

19、如图所示,在△ABC中,BC>AC,点D在BC上,且DC=AC,∠ACB的平分线CF交AD于点F.点E是AB的中点,连接EF.
(1)求证:EF∥BC;
(2)若△ABD的面积是6,求四边形BDFE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图:在△ABC中,BC=2AB=4,AD为边BC上的中线,E、F分别为BC、AB上的动点,且CE=BF,EF与AD交于点G.FH⊥AG于H
(1)①如图1,当∠B=90°时,FG
=
=
EG;GH=
2
2

②如图2,当∠B=60°时,FG
=
=
EG;GH=
1
1

③如图3,当∠B=α时,FG
=
=
EG;GH=
1
2
AD
1
2
AD

请你先填上空,再从以上三个命题中任选择一个进行证明
(2)如图4,若(1)中的点E、F分别在BC、AB的延长线上,试问(1)中的结论是否仍然成立.若成立,请证明你的结论;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,BC=8cm,AB的垂直平分线交AB于点D,交边AC点E,AC的长为12cm,则△BCE的周长等于(  )

查看答案和解析>>

同步练习册答案