精英家教网 > 初中数学 > 题目详情

已知,如图,等边三角形ABC,AD为BC边上的高线,若AB=2,求△ABC的面积.

解:∵△ABC为等边三角形,且AD⊥BC,
∴AD平分∠BAC,即∠BAD=∠CAD=30°.
∴BD=AB=1,而BD2+AD2=AB2
∴AD2=AB2-BD2=3
∴AD=
∴S△ABC=AD•BC
=××2=
∴△ABC的面积为
分析:根据等边三角形各边长相等的性质可得AB=BC,根据等边三角形三线合一的性质可得D为BC的中点,根据勾股定理即可求得AD的值,根据AD、BC即可求得△ABC的面积.
点评:本题考查了勾股定理在直角三角形中的运用,考查了等边三角形三线合一的性质,考查了三角形面积的计算,本题中根据勾股定理求AD的长是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

学习《图形的相似》后,我们可以借助探索两个直角三角形全等的条件所获得经验,继续探索两个直角三角形相似的条件.
(1)“对与两个直角三角形,满足一边一锐角对应相等,或两直角边对应相等,两个直角三角形全等”.精英家教网类似地你可以得到:“满足
 
,或
 
,两个直角三角形相似”.
(2)“满足斜边和一条直角边对应相等的两个直角三角形全等”,类似地你可以得到“满足
 
的两个直角三角形相似”.
请结合下列所给图形,写出已知,并完成说理过程.
已知:如图,
 

试说明Rt△ABC∽Rt△A′B′C′.

查看答案和解析>>

科目:初中数学 来源: 题型:

学习《图形的相似》后,我们可以探索两个直角三角形全等的条件所获得的经验,继续探索两个直角三角形相似的条件.

(1)“对于两个直角三角形,满足一边一锐角对应相等,或两直角边对应相等,两个直角三角形全等”,类似地,你可以得到“满足_____,或_____,两个直角三角形相似”;
(2)“满足斜边和一条直角边对应相等的两个直角三角形全等”,类似地,你可以得到满足_____两个直角三角形相似”.请结合下列所给图形,写出已知,并完成说理过程.
已知:如图,_____.试说明Rt△ABC∽Rt△A/B/C/.

查看答案和解析>>

科目:初中数学 来源:2010年高级中等学校招生全国统一考试数学卷(江苏南京) 题型:解答题

学习《图形的相似》后,我们可以探索两个直角三角形全等的条件所获得的经验,继续探索两个直角三角形相似的条件.

(1)“对于两个直角三角形,满足一边一锐角对应相等,或两直角边对应相等,两个直角三角形全等”,类似地,你可以得到“满足_____,或_____,两个直角三角形相似”;
(2)“满足斜边和一条直角边对应相等的两个直角三角形全等”,类似地,你可以得到满足_____两个直角三角形相似”.请结合下列所给图形,写出已知,并完成说理过程.
已知:如图,_____.试说明Rt△ABC∽Rt△A/B/C/.

查看答案和解析>>

科目:初中数学 来源:2010-2011学年北京市考数学一模试卷 题型:选择题

已知:如图,在等边三角形ABC中,M、N分别是AB、AC的中点,D是MN上任意一点,CD、BD的延长线分别与AB、AC交于F、E,若 ,则等边三角

 

形ABC的边长为

 

A.         B.              C.               D.1

 

 

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在等边三角形ABC中,M、N分别是AB、AC的中点,D是MN上任意一点,CD、BD的延长线分别与AB、AC交于F、E,若 ,则等边三角

 

形ABC的边长为

 

A.         B.              C.              D.1

 

 

查看答案和解析>>

同步练习册答案