精英家教网 > 初中数学 > 题目详情
已知=1,则ax2+bx+c=0( )
A.无实根
B.有两个相等实根
C.有相异的两实根
D.有实根,但不能确定是否一定是相等两实根
【答案】分析:因为=1,所以c=b-2003a,且a≠0,所以ax2+bx+c=0为关于x的一元二次方程,而此方程的判别式△=b2-4ac,把c=b-2003a代入即可确定△的符号,从而确定根的情况.
解答:解:∵=1,
∴c=b-2003a,且a≠0,
∴ax2+bx+c=0为关于x的一元二次方程,
而△=b2-4ac
=b2-4a(b-2003a)
=b2-4ab+(2×a)2=(b-2a)2≥0,
∴方程有实根,但不能确定是否一定是相等两实根.
故选D.
点评:判断一个关于字母x的二次三项式的值与0的大小关于,可以采用配方的方法,转化为a(x+b)2+c的形式.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:抛物线y=ax2+bx+c与x轴交于点A(-2,0)、B(8,0),与y轴交于点C(0,-4).直线y=x+m与抛物线交于点D、E(D在E的左侧),与抛物线的对称轴交于点F.
(1)求抛物线的解析式;
(2)当m=2时,求∠DCF的大小;
(3)若在直线y=x+m下方的抛物线上存在点P,使得∠DPF=45°,且满足条件的点P只有两个,则m的值为
 
.(第(3)问不要求写解答过程)
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,抛物线y=ax2+bx+c的部分图象如图,则下列说法:①对称轴是直线x=1;②当-1<x<3时,y<0;③a+b+c=-4;④方程ax2+bx+c+5=0无实数根,其中正确的有
①②③④
①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

已知多项式2x4-3x3+ax2+7x+b能被x2+x-2整除,则
ab
的值是
-2
-2

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

已知数学公式=1,则ax2+bx+c=0


  1. A.
    无实根
  2. B.
    有两个相等实根
  3. C.
    有相异的两实根
  4. D.
    有实根,但不能确定是否一定是相等两实根

查看答案和解析>>

同步练习册答案