精英家教网 > 初中数学 > 题目详情
如图,C是线段AB上的一点,△ACD和△BCE都是等边三角形.
(1)求证:AE=BD;
(2)若AE交CD于M,BD交CE于N,连接MN,试判断△MCN的形状,并说明理由.
分析:(1)根据等边三角形的性质得到AC=CD,CE=CB,∠ACD=∠BCE=60°,则可得到∠ACE=∠DCB,根据全等三角形的判定方法可得到△ACE≌△DCB,于是有AE=BD;
(2)由于ACD=∠BCE=60°,可得∠DCE=60°,则∠ACM=∠DCN,利用△ACE≌△DCB得到∠CAM=∠CDN,再根据全等三角形的判定方法可得到△ACM≌△DCN,则CM=CN,
然后根据等边三角形的判定方法即可得到△MCN为等边三角形.
解答:(1)证明:∵△ACD和△BCE都是等边三角形,
∴AC=CD,CE=CB,∠ACD=∠BCE=60°,
∴∠ACD+∠DCE=∠BCE+∠DCE,
∴∠ACE=∠DCB,
在△ACE和△DCB中
AC=CD
∠ACE=∠DCB
CE=CB

∴△ACE≌△DCB,
∴AE=BD;

(2)解:△MCN是等边三角形.理由如下:
∵∠ACD=∠BCE=60°,∠ACB是一个平角,
∴∠DCE=60°,
即∠ACM=∠DCN,
∵△ACE≌△DCB,
∴∠CAM=∠CDN,
在△ACM和△DCN中
∠CAM=∠CDN
CA=CD
∠ACM=∠DCN

∴△ACM≌△DCN,
∴CM=CN,
∴△MCN为等边三角形.
点评:本题考查了全等三角形的判定与性质:有两组边对应相等,并且它们所夹的角也相等,那么这两个三角形全等;有两组角分别相等,且其中一组角所对的边对应相等,那么这两个三角形全等;全等三角形的对应边相等,对应角相等.也考查了等边三角形的判定与性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,C是线段AB上一点,M是AC的中点,N是BC的中点
(1)若AM=1,BC=4,求MN的长度.
(2)若AB=6,求MN的长度.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

23、如图,C是线段AB上一点,分别以AC、BC为边在线段AB同侧作正方形ACDE和BCFG,连接AF、BD.
(1)AF与BD是否相等,为什么?
(2)如果点C在线段AB的延长线上,(1)中的结论是否成立?请作图,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图,D是线段AB上的点,以BD为直径作⊙O,AP切⊙O于E,BC⊥AF于C,连接DE精英家教网、BE.
(1)求证:BE平分∠ABC;
(2)若D是AB中点,⊙O直径BD=3
3
,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,D是线段AB上的一点,BD=2AD=4,以BD为直径作半圆O,过点A作半圆O的切线,切点为E,过点B作BC⊥AE于C交半圆于F,连接EF.有下列四个结论:
①∠A=30°;②BF=3CF;③
DE
=
EF
;④EF∥AB.
其中正确的结论是
①③④
①③④

查看答案和解析>>

同步练习册答案