精英家教网 > 初中数学 > 题目详情

时,代数式的两个值 (     )。

A.相等;                              B.互为倒数;

C.互为相反数;                        D.既不相等也不互为相反数

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

6、已知四个代数式:①m+n;②m-n;③2m+n;④2m-n.当用2m2n乘以上述四个式中的两个时,便得到多项式4m4n-2m3n2-2m2n3,那么这两个式子的编号是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

在Rt△ABC中,∠C=90°,BC=6cm,∠ABC=30°.D是CB上一点,DC=1cm.P、Q是直线CB上的两个动点,点P从C点出发,以1cm/s的速度沿直线CB向右运动,同时,点Q从D点出发,以2cm/s的速度沿直线CB向右运动,以PQ为一边在CB的上方作等边三角形PQR,如图是其运动过程中的某一位置.设运动的时间是t(s).
(1)△PQR的边长是
 
cm(用含有t的代数式表示);当t=
 
时,点R落在AB上.
(2)若等边△PQR与△ABC重叠部分的面积为y(cm2),求y与t之间的函数关系式,并写出自变量t的取值范围.
(3)在P、Q移动的同时,以点A为圆心、tcm为半径的⊙A也在不断变化,请直接写出⊙A与△PQR的三边所在的直线相切时t的值.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,抛物线y=x2-(m+2)x+3(m-1)与x轴的两个交点M、N在原点的精英家教网两侧,点N在点M的右边,直线y1=-2x+m+6经过点N,交y轴于点F.
(1)求这条抛物线和直线的解析式.
(2)又直线y2=kx(k>0)与抛物线交于两个不同的点A、B,与直线y1交于点P,分别过点A、B、P作x轴的垂线,垂足分别是C、D、H.
①试用含有k的代数式表示
1
OC
-
1
OD

②求证:
1
OC
-
1
OD
=
2
OH

(3)在(2)的条件下,延长线段BD交直线y1于点E,当直线y2绕点O旋转时,问是否存在满足条件的k值,使△PBE为等腰三角形?若存在,求出直线y2的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

在直角坐标系xOy中,抛物线y=x2-2tx+t2-t(t>0)与x轴的两个交点分别为A、B(A在B的左边),直线l:y=kx经过抛物线的顶点C,与抛物线的另一个交点为D.
(1)求抛物线的顶点C的坐标(用含t的代数表示),并求出直线l 的解析式;
(2)如图①,当t=
1
4
时,探究AC与BD的位置关系,并说明理由;
(3)当t≠1时,设△ABC的面积为S1,△ABD的面积为S2,用含t的代数式表示
S1
S2
的值.
精英家教网

查看答案和解析>>

同步练习册答案