分析 由已知作PC⊥AB于C,可得△ABP中∠A=60°∠B=45°且PA=100m,要求AB的长,可以先求出AC和BC的长.
解答
解:过点P作PC⊥AB于C,则∠ACP=∠BCP=90°,∠APC=30°,∠BPC=45°.
在Rt△ACP中,∵∠ACP=90°,∠APC=30°,AP=100,
∴AC=$\frac{1}{2}$AP=50,PC=$\sqrt{3}$AC=50$\sqrt{3}$.
在Rt△BPC中,∵∠BCP=90°,∠BPC=45°,
∴BC=PC=50$\sqrt{3}$.
∴AB=AC+BC=(50+50$\sqrt{3}$)(米).
答:景点A与B之间的距离为(50+50$\sqrt{3}$)米.
点评 本题考查了解直角三角形的应用,对于解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{1}{4}$ | C. | $\frac{1}{2}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com