精英家教网 > 初中数学 > 题目详情
(2006•厦门)如图,AC为⊙O直径,B为AC延长线上的一点,BD交⊙O于点D,∠BAD=∠B=30°
(1)求证:BD是⊙O的切线;
(2)请问:BC与BA有什么数量关系?写出这个关系式,并说明理由.

【答案】分析:(1)连接OD,根据等腰三角形的性质易得∠ODB=90°,即OD⊥DB即可得到BD是⊙O的切线
(2)根据等边三角形的性质,可得∠DOC=60°,再根据含30°锐角的直角三角形的性质,可得OD=OB,进而可得BC=AB.
解答:(1)证明:连接OD,
∵OD=OA,
∴∠OAD=∠ODA=30°,
∴∠DOB=60°;
又∵∠DBA=30°,
∴∠ODB=90°,
∵D为⊙O上一点,
∴BD是⊙O的切线.

(2)解:BC=AB.理由如下:
连接CD;
∵OD=OC且∠DOB=60°,
∴△ODC为等边三角形,
∴∠DOC=60°,
∴OD=OB;
∵OA=OD=OC,
∴BC=OB-OC=OC,
∴BC=AB.
点评:本题考查常见的几何题型,包括切线的判定,线段等量关系的证明,要求学生掌握常见的解题方法,并能结合图形选择简单的方法解题.
练习册系列答案
相关习题

科目:初中数学 来源:2006年全国中考数学试题汇编《二次函数》(07)(解析版) 题型:解答题

(2006•厦门)如图1,连接△ABC的各边中点得到一个新的△A1B1C1,又连接△A1B1C1的各边中点得到△A2B2C2,如此无限继续下去,得到一系列三角形:△ABC,△A1B1C1,△A2B2C2,…
已知A(0,0),B(3,0),C(2,2).

(1)求这一系列三角形趋向于一个点M的坐标;
(2)如图2,分别求出经过A,B,C三点的抛物线解析式和经过A1,B1,C1三点的抛物线解析式;
(3)设两抛物线的交点分别为E、F,连接EF、EC1、FC1、EC2、FC2、C1C2,问:C2与△EC1F的关系是什么?
(4)如图3,问:A,A2,C,C2四点可不可能在同一条抛物线上,试说明理由.

查看答案和解析>>

科目:初中数学 来源:2006年全国中考数学试题汇编《一次函数》(03)(解析版) 题型:填空题

(2006•厦门)如图,温度计上表示了摄氏温度(℃)与华氏温度(℉)的刻度.能否用一个函数关系式来表示摄氏温度y(℃)和华氏温度x(℉)的关系:    ;如果气温是摄氏32度,那相当于华氏    ℉.

查看答案和解析>>

科目:初中数学 来源:2006年全国中考数学试题汇编《函数基础知识》(03)(解析版) 题型:选择题

(2006•厦门)如图所示,单位圆中弧的长为x,f(x)表示与弦AB所围成的弓形面积的2倍,则函数y=f(x)的图象是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源:2009年合肥一中数理特长班招生考试数学试卷(解析版) 题型:选择题

(2006•厦门)如图所示,单位圆中弧的长为x,f(x)表示与弦AB所围成的弓形面积的2倍,则函数y=f(x)的图象是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源:2006年福建省厦门市中考数学试卷(课标B卷)(解析版) 题型:解答题

(2006•厦门)如图1,连接△ABC的各边中点得到一个新的△A1B1C1,又连接△A1B1C1的各边中点得到△A2B2C2,如此无限继续下去,得到一系列三角形:△ABC,△A1B1C1,△A2B2C2,…
已知A(0,0),B(3,0),C(2,2).

(1)求这一系列三角形趋向于一个点M的坐标;
(2)如图2,分别求出经过A,B,C三点的抛物线解析式和经过A1,B1,C1三点的抛物线解析式;
(3)设两抛物线的交点分别为E、F,连接EF、EC1、FC1、EC2、FC2、C1C2,问:C2与△EC1F的关系是什么?
(4)如图3,问:A,A2,C,C2四点可不可能在同一条抛物线上,试说明理由.

查看答案和解析>>

同步练习册答案