精英家教网 > 初中数学 > 题目详情

如图,已知正方形ABCD的边长是2,E是DC上一点,△ADE经顺时针旋转后与△ABF重合.
(1)指出旋转的中心和旋转的角度;
(2)如果连结EF,那么△AEF是怎样的三角形?请说明理由.
(3)已知点G在BC上,且∠GAE=45°.
①试说明GE=DE+BG.
②若E是DC的中点,求BG的长.

解:(1)旋转的中心是点A,旋转的角度是90°.

(2)△AEF是等腰直角三角形.
理由:∵四边形ABCD是正方形,
∴∠DAB=90°.
∵△ADE绕着点A顺时针旋转90°后与△ABF重合,
∴△ADE≌△ABF,
∴AE=AF.
又∵∠EAF=90°,
∴△AEF是等腰直角三角形.

(3)①∵∠GAE=45°,∠EAF=90°,
∴AG是∠EAF的平分线,
又∵AF=AE,
∴AG是线段EF的垂直平分线,
∴GE=GF.
∵DE=BF,
∴DE+GB=BF+BG=GF.
∴GE=DE+BG.
②∵E是DC的中点,
∴DE=EC=FB=1.
设GB=x,则GC=2-x,GE=1+x.
在Rt△ECG中,∠C=90°,由勾股定理,得
1+(2-x)2=(1+x)2
解这个方程,得x=,即BG的长为
(注:用其它方法求解参照以上标准给分.)
分析:(1)根据旋转的定义,直接得出旋转的中心和旋转的角度;
(2)根据旋转的性质得出△ADE≌△ABF,进而得出AE=AF,求出△AEF是等腰直角三角形;
(3)①首先得出AG是线段EF的垂直平分线,进而得出DE+GB=BF+BG=GF,即可得出答案;
②首先设GB=x,则GC=2-x,GE=1+x.在Rt△ECG中,∠C=90°,由勾股定理,得1+(2-x)2=(1+x)2,求出x即可.
点评:此题主要考查了旋转的性质以及勾股定理和线段垂直平分线的性质等知识,熟练利用旋转的性质得出△ADE≌△ABF是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知正方形ABCD的边AB与正方形AEFM的边AM在同一直线上,直线BE与DM交于点N.求证:BN⊥DM.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•北碚区模拟)如图,已知正方形ABCD,点E是BC上一点,点F是CD延长线上一点,连接EF,若BE=DF,点P是EF的中点.
(1)求证:DP平分∠ADC;
(2)若∠AEB=75°,AB=2,求△DFP的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知正方形ABCD,点E在BC边上,将△DCE绕某点G旋转得到△CBF,点F恰好在AB边上.
(1)请画出旋转中心G (保留画图痕迹),并连接GF,GE;
(2)若正方形的边长为2a,当CE=
a
a
时,S△FGE=S△FBE;当CE=
2a+
2
a
2
或EC=
2a-
2
a
2
2a+
2
a
2
或EC=
2a-
2
a
2
 时,S△FGE=3S△FBE

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知正方形ABCD的对角线交于O,过O点作OE⊥OF,分别交AB、BC于E、F,若AE=4,CF=3,则EF的值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知正方形ABCD的对角线AC,BD相交于点O,E是AC上的一点,过点A作AG⊥BE,垂足为G,AG交BD于点F.
(1)试说明OE=OF;
(2)当AE=AB时,过点E作EH⊥BE交AD边于H.若该正方形的边长为1,求AH的长.

查看答案和解析>>

同步练习册答案