精英家教网 > 初中数学 > 题目详情
已知:如图1,四边形ABCD中,AC平分∠BAD,∠B和∠D都是直角.
(1)求证:BC=CD.
(2)若将原题中的已知条件“∠B和∠D都是直角”放宽为“∠B和∠D互为补角”,其余条件不变,如图2,猜想:BC边和邻边CD的长度是否一定相等?请证明你的结论.
分析:(1)根据角平分线上的点到角的两边的距离相等可得BC=CD;
(2)过点C作CE⊥AD于E,作CF⊥AB于F,根据等角的补角相等求出∠D=∠CBF,根据角平分线上的点到角的两边的距离相等可得CD=CF,然后利用“角角边”证明△BCF和△DCE全等,根据全等三角形对应边相等证明即可.
解答:(1)证明:∵∠D=∠B=90°,
∴CD⊥AD,CB⊥AB,
∵AC平分∠BAD,
∴BC=CD;

(2)解:一定相等.
证明:如图,过点C作CE⊥AD于E,作CF⊥AB于F,
∴∠CBF与∠ABC互补.
∵∠B和∠D都是直角,互为补角,
∴∠D=∠CBF,
又∵AC是∠BAD的平分线,
∴CE=CF,
在Rt△BCF与Rt△DCE中,
∠D=∠CBF
∠DEC=∠CFB
CE=CF

∴Rt△BCF≌Rt△DCE(AAS),
∴BC=CD.
点评:本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,(2)作辅助线构造出全等三角形是解题的关键,也是本题的难点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

21、已知:如图在平行四边形ABCD中,过对角线BD的中点O作直线EF分别交DA的延长线、AB、DC、BC的延长线于点E、M、N、F.
(1)观察图形并找出一对全等三角形:△
≌△
,请加以证明;
(2)在(1)中你所找出的一对全等三角形,其中一个三角形可由另一个三角形经过怎样的变换得到?

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,平行四边形ABCD中,E、F分别为AB、CD上的点,且AE=CF,EF与BD交于点O.
求证:OE=OF.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2008•顺义区二模)已知:如图,平行四边形ABCD中,AE、BE、CF、DF分别平分∠BAD、∠ABC、∠BCD、∠CDA,BE、DF的延长线分别交AD、BC于点M、N,连接EF,若AD=7,AB=4,求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在四边形ABCD中,BC<DC,∠BCD=60°,∠ADC=45°,CA平分∠BCD,AB=AD=2
2
,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在四边形ABCD中,AC平分∠BAD,CE⊥AB于E,且∠B+∠D=180°,求证:AE=AD+BE.

查看答案和解析>>

同步练习册答案