2£®Èç¹ûµãP½«Ïß¶ÎAB·Ö³ÉÁ½ÌõÏàµÈµÄÏß¶ÎAPºÍPB£¬ÄÇôµãP½Ð×öÏß¶ÎABµÄ¶þ·Öµã£¨Öе㣩£»Èç¹ûµãP1¡¢P2½«Ïß¶ÎAB·Ö³ÉÈýÌõÏàµÈµÄÏß¶ÎAP1¡¢P1P2ºÍP2B£¬ÄÇôµãP1¡¢P2½Ð×öÏß¶ÎABµÄÈý·Öµã£»ÒÀ´ËÀàÍÆ£¬Èç¹ûµãP1¡¢P2¡¢¡­¡¢Pn-1½«Ïß¶ÎAB·Ö³ÉnÌõÏàµÈµÄÏß¶ÎAP1¡¢P1P2¡¢P2P3¡¢¡­¡¢Pn-1B£¬ÄÇôµãP1¡¢P2¡¢¡­¡¢Pn-1½Ð×öÏß¶ÎABµÄnµÈ·Öµã£¬Èçͼ£¨1£©Ëùʾ

ÒÑÖªµãA¡¢BÔÚÖ±ÏßlµÄͬ²à£¬Çë½â´ðÏÂÃæµÄÎÊÌ⣻
£¨1£©ÔÚËù¸ø±ß³¤Îª1¸öµ¥Î»µÄÕý·½ÐÎÍø¸ñÖУ¬Ì½¾¿£º
¢ÙÈçͼ£¨2£©£¬ÈôµãA¡¢Bµ½Ö±ÏßlµÄ¾àÀë·Ö±ðÊÇ4¸öµ¥Î»ºÍ2¸öµ¥Î»£¬ÄÇôÏß¶ÎABµÄÖеãPµ½Ö±ÏßlµÄ¾àÀëÊÇ3µ¥Î»£®
¢ÚÈçͼ£¨3£©£¬ÈôµãA¡¢Bµ½Ö±ÏßlµÄ¾àÀë·Ö±ðÊÇ2¸öµ¥Î»ºÍ5¸öµ¥Î»£¬ÄÇôÏß¶ÎABµÄÖеãPµ½Ö±ÏßlµÄ¾àÀëÊÇ$\frac{7}{2}$µ¥Î»£®
¢ÛÓÉ¢Ù¢Ú¿ÉÒÔ·¢ÏÖ½áÂÛ£ºÈôµãA¡¢Bµ½Ö±ÏßlµÄ¾àÀë·Ö±ðÊÇh¸öµ¥Î»ºÍt¸öµ¥Î»£¬ÄÇôÏß¶ÎABµÄÖеãPµ½Ö±ÏßlµÄ¾àÀëÊÇ$\frac{h+t}{2}$µ¥Î»£®
£¨2£©Èçͼ£¨4£©£¬ÈôµãA¡¢Bµ½Ö±ÏßlµÄ¾àÀë·Ö±ðÊÇd1ºÍd2£¬ÀûÓã¨1£©ÖеĽáÂÛÇóÏß¶ÎABµÄÈýµÈ·ÖµãP1¡¢P2µ½Ö±ÏßlµÄ¾àÀë$\frac{2{d}_{1}+{d}_{2}}{3}$£¬$\frac{{d}_{1}+2{d}_{2}}{3}$
£¨3£©ÈôµãA¡¢Bµ½Ö±ÏßlµÄ¾àÀë·Ö±ðÊÇd1ºÍd2£¬µãP1¡¢P2¡¢¡­Pn-1ΪÏß¶ÎABµÄnµÈ·Öµã£¬ÔòµÚi¸önµÈ·ÖµãPiµ½Ö±ÏßlµÄ¾àÀëÊÇ$\frac{£¨n-1£©{d}_{1}+i{d}_{2}}{n}$£®

·ÖÎö £¨1£©¸ù¾ÝÈý½ÇÐεÄÖÐλÏß¶¨ÀíÒÔ¼°ÌÝÐεÄÖÐλÏß¶¨Àí½øÐмÆË㣮
£¨2£©ÉèP1M=x£¬ÓÉ£¨1£©ÖнáÂۿɵÃ$\frac{AC+{P}_{2}N}{2}$=x£¬ÔòP2N=2x-d1£¬ÓÉ£¨1£©ÖнáÂۿɵÃ$\frac{{P}_{1}M+BD}{2}$=P2N£¬¼´$\frac{x+{d}_{2}}{2}$=2x-d1£¬Ò×Çó¼´µã1¡¢P2µ½Ö±ÏßlµÄ¾àÀë·Ö±ðΪ$\frac{2{d}_{1}+{d}_{2}}{3}$¡¢$\frac{{d}_{1}+2{d}_{2}}{3}$£»
£¨3£©¸ù¾Ý£¨1£©¡¢£¨2£©µÄ¹æÂÉ×ܽáµÚi¸önµÈ·ÖµãPiµ½Ö±ÏßlµÄ¾àÀ룮

½â´ð ½â£º£¨1£©¢ÙÈçͼ£¨2£©£¬ABÔÚÖ±ÏßlµÄͬ²à£¬ÔòÏß¶ÎABµÄÖеãPµ½Ö±ÏßlµÄ¾àÀëÊÇ$\frac{1}{2}$¡Á£¨4+2£©=3£¨cm£©£»
¹Ê´ð°¸ÊÇ£º3£»
¢ÚÈçͼ£¨3£©£¬ÈôµãA¡¢Bµ½Ö±ÏßlµÄ¾àÀë·Ö±ðÊÇ2¸öµ¥Î»ºÍ5¸öµ¥Î»£¬ÄÇôÏß¶ÎABµÄÖеãPµ½Ö±ÏßlµÄ¾àÀëÊÇ£º$\frac{2+5}{2}$=$\frac{7}{2}$£¨µ¥Î»£©£®
¹Ê´ð°¸ÊÇ£º$\frac{7}{2}$£»
¢ÛÓÉ¢Ù¢Ú¿ÉÒÔ·¢ÏÖ½áÂÛ£ºÈôµãA¡¢Bµ½Ö±ÏßlµÄ¾àÀë·Ö±ðÊÇh¸öµ¥Î»ºÍt¸öµ¥Î»£¬ÄÇôÏß¶ÎABµÄÖеãPµ½Ö±ÏßlµÄ¾àÀëÊÇ $\frac{h+t}{2}$µ¥Î»£®
¹Ê´ð°¸ÊÇ£º$\frac{h+t}{2}$£®

£¨2£©Èçͼ£¨4£©£¬ÉèP1M=x£¬ÓÉ£¨1£©ÖнáÂۿɵÃ$\frac{AC+{P}_{2}N}{2}$=x£¬
¡àP2N=2x-d1£¬
ÓÉ£¨1£©ÖнáÂۿɵÃ$\frac{{P}_{1}M+BD}{2}$=P2N£¬¼´$\frac{x+{d}_{2}}{2}$=2x-d1£¬
½â·½³ÌµÃx=$\frac{2{d}_{1}+{d}_{2}}{3}$£¬
¡àP2N=$\frac{{d}_{1}+2{d}_{2}}{3}$£¬¼´µã1¡¢P2µ½Ö±ÏßlµÄ¾àÀë·Ö±ðΪ$\frac{2{d}_{1}+{d}_{2}}{3}$¡¢$\frac{{d}_{1}+2{d}_{2}}{3}$£¬
ÈôµãA¡¢Bµ½Ö±ÏßlµÄ¾àÀë·Ö±ðÊÇd1ºÍd2£¬ÀûÓã¨1£©ÖеĽáÂÛÇóÏß¶ÎABµÄÈýµÈ·ÖµãP1¡¢P2µ½Ö±ÏßlµÄ¾àÀë $\frac{2{d}_{1}+{d}_{2}}{3}$£¬$\frac{{d}_{1}+2{d}_{2}}{3}$£®

£¨3£©ÈôµãA¡¢Bµ½Ö±ÏßlµÄ¾àÀë·Ö±ðÊÇd1ºÍd2£¬µãP1¡¢P2¡¢¡­Pn-1ΪÏß¶ÎABµÄnµÈ·Öµã£¬ÔòµÚi¸önµÈ·ÖµãPiµ½Ö±ÏßlµÄ¾àÀëÊÇ $\frac{£¨n-1£©{d}_{1}+i{d}_{2}}{n}$£®

µãÆÀ ±¾Ì⿼²éÁËÁ½µã¼äµÄ¾àÀëºÍµãµ½Ö±ÏߵľàÀ룮½âÌâʱ£¬×¢ÒâÊýÐνáºÏÊýѧ˼ÏëµÄÓ¦Óã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®¹ØÓÚx£¬yµÄ·½³Ì×é$\left\{\begin{array}{l}{3x+2y=2a}\\{2x-4y=-6}\end{array}\right.$µÄ½âÂú×ãx£¼1ÇÒy£¾1£¬ÇóaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®£¨1£©Ìî±í£º
 a 0.000 0010.001 11000  1000 000
 $\root{3}{a}$0.010.1 10 100 
£¨2£©ÓÉÉϱíÄã·¢ÏÖÁËʲô¹æÂÉ£¿ÓÃÓïÑÔÐðÊöÕâ¸ö¹æÂÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÏÈÔĶÁµÚ£¨1£©ÌâµÄ½â´ð¹ý³Ì£¬È»ºóÔÙ½âµÚ£¨2£©Ì⣮
£¨1£©ÒÑÖª¶àÏîʽ2x3-x2+mÓÐÒ»¸öÒòʽÊÇ2x+1£¬ÇómµÄÖµ£®
½â·¨Ò»£ºÉè2x3-x2+m=£¨2x+1£©£¨x2+ax+b£©£¬
Ôò2x3-x2+m=2x3+£¨2a+1£©x2+£¨a+2b£©x+b£®
±È½ÏϵÊýµÃ$\left\{\begin{array}{l}{2a+1=-1}\\{a+2b=0}\\{b=m}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{a=-1}\\{b=\frac{1}{2}}\\{m=\frac{1}{2}}\end{array}\right.$¡àm=$\frac{1}{2}$£®
£¨2£©ÒÑÖªmx3+nx2+x+2ÓÐÒòʽ£¨x-1£©ºÍ£¨x-2£©£¬Çóm¡¢nµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®¼ÆË㣺
£¨1£©$\sqrt{24}$-$\sqrt{\frac{2}{3}}$+$\sqrt{2\frac{1}{6}}$+$\sqrt{12}$£»
£¨2£©$\frac{3}{2}$$\sqrt{12}$•£¨-15£©•£¨-$\frac{1}{9}$$\sqrt{48}$£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÔĶÁÀí½âÓ¦ÓãºÎÒÃÇÔڿα¾ÖÐѧϰ¹ý£¬ÒªÏë±È½ÏaºÍbµÄ´óС¹ØÏµ£¬¿ÉÒÔ½øÐÐ×÷²î·¨£¬½á¹ûÈçÏÂa-b£¾0£¬a£¾b£»a-b£¼0£¬a£¼b£»a-b=0£¬a=b£®
£¨1£©±È½Ï2a2Óëa2-1µÄ´óС£¬²¢ËµÃ÷ÀíÓÉ£®
£¨2£©ÒÑÖªA=2£¨a2-2a+5£©£¬B=3£¨a2-$\frac{4}{3}$a+4£©£¬±È½ÏAÓëBµÄ´óС£¬²¢ËµÃ÷ÀíÓÉ£®
£¨3£©±È½Ïa2+b2Óë2abµÄ´óС£¬²¢ËµÃ÷ÀíÓÉ£®
£¨4£©Ö±½ÓÀûÓã¨3£©µÄ½áÂÛ½â¾ö£ºÇóa2+$\frac{1}{a^2}$+3µÄ×îСֵ£®
£¨5£©ÒÑÖªÈçͼ£¬Ö±Ïßa¡ÍbÓÚO£¬ÔÚa£¬bÉϸ÷ÓÐÁ½µãB£¬DºÍA£¬C£¬ÇÒAO=4£¬BO=9£¬CO=x2£¬DO=y2£¬ÇÒxy=3£¬ÇóËıßÐÎABCDÃæ»ýµÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÏÂÁз½³Ì±äÐÎÕýÈ·µÄÊÇ£¨¡¡¡¡£©
¢Ù3x+6=0±äÐÎΪx+2=0    ¢Úx+7=5-3x±äÐÎΪ4x=-2
¢Û$\frac{2x}{5}$=3±äÐÎΪ2x=15      ¢Ü4x=-2±äÐÎΪx=-2£®
A£®¢Ù¢ÛB£®¢Ù¢Ú¢ÛC£®¢Û¢ÜD£®¢Ù¢Ú¢Ü

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®Èô£¨2015-x£©£¨2013-x£©=2014£¬Ôò£¨2015-x£©2+£¨2013-x£©2=4032£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®£¨a+1£©2+|b-2|+£¨$\frac{1}{2}$+c£©2=0£¬Çó£¨-$\frac{2}{3}$a2c2£©3¡Â£¨$\frac{4}{3}$a4c2£©¡Á£¨-a2b£©2µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸