D
分析:连接AC,由圆周角定理可得出∠ACD=90°,再由圆内接四边形的性质及三角形内角和定理可求出∠PAC=30°,由直角三角形的性质可求出AP、AC的长,由相似三角形的判定定理及性质可得出CD的长,再根据勾股定理接可求出AD的长,进而求出该圆的面积.
解答:

解:连接AC,
∵AD是⊙O的直径,
∴∠ACD=90°,
∵∠APD=60°,
∴∠PAC=30°,
∴AP=2PC=2×4=8,
∵AB=5,
∴PB=8-5=3,
∵四边形ABCD是以AD为直径的圆内接四边形,
∴∠BAD+∠BCD=180°,
∵∠BCD+∠PCB=180°,
∴∠BAD=∠PCB,∠APD=∠APD,
∴△PCB∽△PAD,
∴

=

,即

=

,PD=6,
∴CD=PD-PC=6-4=2,
∴AC=

=

=4

,
在Rt△ACD中,AD=

=

=2

.
∴OA=

AD=

,
∴⊙O的面积=π×(

)
2=13π.
故选D.
点评:本题考查的是相似三角形的判定与性质、圆内接四边形的性质、勾股定理,解答此题的关键是作出辅助线,构造出直角三角形求解.