精英家教网 > 初中数学 > 题目详情

如图,已知在△ABC中,AC=15,AB=25,sin∠CAB=数学公式,以CA为半径的⊙C与AB、BC分别交于点D、E,联结AE,DE.
(1)求BC的长;
(2)求△AED的面积.

解:(1)过点作CF⊥AB于点F,
∵AC=15,sin∠CAB=
∴CF=AC•sin∠CAB=15×=12,
在Rt△ACF中,
∵AC=15,CF=12,
∴AF===9,
∴BF=AB-AF=25-9=16,
在Rt△BCF中,
∵BF=16,CF=12,
∴BC===20;

(2)∵CF⊥AB,AF=9,
∴AD=2AF=18,
∵BC=20,CE=AC=15,
∴BE=BC-CE=20-15=5,
过点E作EG⊥AB于点G,
∵EG∥CF,
∴△BEG∽△BCF,
==,解得EG=3,
∴S△AEG=AD•EG=×18×3=27.
分析:(1)过点作CF⊥AB于点F,由AC=15,sin∠CAB=求出CF的长,由勾股定理求出AF的长,故可得出BF的长,在Rt△BCF中,根据勾股定理可求出BC的长;
(2)由(1)中CF⊥AB可知AD=2AF,根据BC的长可得出BE的长,过点E作EG⊥AB于点G,由相似三角形的判定定理可得出△BEG∽△BCF,故可得出EG的长,再根据S△AEG=AD•EG即可得出结论.
点评:本题考查的是相似三角形的判定与性质,根据题意作出辅助线,构造出相似三角形是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图,已知在△ABC中,AD、AE分别是BC边上的高和中线,AB=9cm,AC=7cm,BC=8m,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在△ABC中,BD为∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD于M,PN⊥CD于N,求证:PM=PN.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在△ABC中,AB=AC,∠A=100°,CD是∠ACB的平分线.
(1)∠ADC=
60°
60°

(2)求证:BC=CD+AD.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在△ABC中,∠B与∠C的平分线交于点P.当∠A=70°时,则∠BPC的度数为
125°
125°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在△ABC中,CD=CE,∠A=∠ECB,试说明CD2=AD•BE.

查看答案和解析>>

同步练习册答案