精英家教网 > 初中数学 > 题目详情
63、如图,点P是∠AOB的平分线上的一点,作PD⊥OA,垂足为D,PE⊥OB垂足为E,DE交OC于点F.则在图中:
(1)总共有
3
对全等三角形;
(2)总共
8
个直角.
分析:根据已知并利用全等三角形的判定方法可以求得有三对全等三角形,有八个直角.
解答:(1)有三对全等三角形.由“AAS”可知△ODP≌△OEP,又由“SAS”可知:△ODF≌△OEF,△PDF≌△PEF.
(2)共有八个直角,由(1)中的△ODF≌△OEF可知:∠OFD=∠OFE,而∠OFD+∠OFE=180°,因此OF⊥ED.这样以F为顶点有四个直角,另有已知的四个直角,共计八个直角.
故分别填3,8.
点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

24、如图,点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别为C、D.
求证:(1)∠ECD=∠EDC;
(2)OC=OD;
(3)OE是线段CD的垂直平分线.

查看答案和解析>>

科目:初中数学 来源: 题型:

23、作图题:如图,点P是∠AOB内一点.
(1)过点p画一条直线平行于BO;(2)过点P画一条直线垂直于AO.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点P是∠AOB内的一点,过点P作PC∥OB,PD∥OA,分别交OA、OB于点C、D,且PE⊥OA,精英家教网PF⊥OB,垂足分别为点E、F.
(1)求证:OC•CE=OD•DF;
(2)当点P位于∠AOB的什么位置时,四边形CODP是菱形并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点P是∠AOB内部一点,点P关于OA、OB的对称点是H、G,直线HG交OA、OB于点C、D,若HG=4cm,且∠AOB=30°,则△HOG的周长是
12
12
cm.

查看答案和解析>>

同步练习册答案