精英家教网 > 初中数学 > 题目详情

直角梯形纸片ABCD,AB∥CD,AD⊥AB,AB=8,AD=CD=4,点E、F分别在线段AB、AD上,将△AEF沿EF翻折,点A的落点记为P,P落在直角梯形ABCD内部.
(1)若AE=5,要使PD值最小,确定点P的位置,同时说明PD值最小的理由.
(2)当AE为多少时,PD的值最小.

解:根据题意画出图形如图1所示:
(1)PD=-5.
已知EP=5,
DE==
D在以E为圆心5为半径的圆外,
∴P为⊙E与DE的交点,
∴PD=-5;


(2)连接ED,过P1P⊥ED于P,
那么在Rt△P1PD中,P1D>PD,
故当点A的对称点P落在线段ED上时,PD有最小值,(图2)
而E在线段AB上,
故当E与B重合时,即EP=BP,此时PD取最小值.(图3)
此时,AB=BP=8,
又∵BD==4
∴PD=BD-BP=4-8.
AE=x,
DE=
DP=-x,
解得x=8.
分析:(1)利用勾股定理易得DE的长,画出以E为圆心,AE长为半径的圆,可得P为DE与⊙E的交点;
(2)连接ED,过P1P⊥ED于P,得到PD的最小值,利用勾股定理可得AE的值.
点评:考查了折叠的相关问题;用到的知识点为:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;注意利用矩形的性质,直角三角形的性质,勾股定理求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,直角梯形纸片ABCD,AD⊥AB,AB=8,AD=CD=4,点E、F分别在线段AB、A精英家教网D上,将△AEF沿EF翻折,点A的落点记为P.
(1)当AE=5,P落在线段CD上时,PD=
 

(2)当P落在直角梯形ABCD内部时,PD的最小值等于
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角梯形纸片ABCD中,AD∥BC,∠A=90°,∠C=30°,点F是CD边上的一点,将纸片沿BF折叠,点C落在E点,使直线BE经过点D,若BF=CF=8,则AD的长为
2
3
2
3

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•宁德质检)在数学“综合与实践”课中,陈老师要求同学们制作一张直角梯形纸片ABCD,要求梯形的上底AD=3cm,下底BC=5cm.探索:当直角梯形ABCD的高AB是多少厘米时,将该梯形沿某一直线剪成两部分后,能拼成一个既不重叠又无空隙的特殊几何图形.
(1)如图1,小颖过腰CD的中点E作EF⊥BC于F,沿EF将梯形剪切后,拼成正方形.求小颖所制作的直角梯形的高AB是多少厘米?
(2)如图2,小亮过点B作BM⊥CD于M,沿BM将梯形剪切后,拼成直角三角形.请在答题卡的相应位置补全拼后的一种直角三角形草图,并求小亮所制作的直角梯形的高AB是多少厘米?
(3)探索当直角梯形的高AB是多少厘米时,将该梯形沿某一直线剪成两部分后,能拼成一个不是正方形的菱形.请在答题卡的相应位置画出两种不同剪切、拼图方法的草图,并直接写出原直角梯形的高AB.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角梯形纸片ABCD中,AB∥DC,∠A=90°,CD>AD,将纸片沿过点D的直线折叠,使点A落在边CD上的点E处,折痕为DF.连接EF并展开纸片.
(1)判断四边形ADEF的形状,并说明理由.
(2)取线段AF的中点G,连接EG、DG,如果DG∥CB,试说明四边形GBCE是等腰梯形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•内江模拟)如图,直角梯形纸片ABCD,AD⊥AB,AD=CD=4,点E、F分别在线段AB、CD上,将△AEF沿EF翻折,点A落在线段CD上的点P处,若AE=5,则PF的长为(  )

查看答案和解析>>

同步练习册答案