精英家教网 > 初中数学 > 题目详情
2.如图,∠AOB=30°,点M、N分别在边OA、OB上,且OM=1,ON=3,点P、Q分别在边OB、OA上,则MP+PQ+QN的最小值是$\sqrt{10}$.

分析 作M关于OB的对称点M′,作N关于OA的对称点N′,连接M′N′,即为MP+PQ+QN的最小值.

解答 解:作M关于OB的对称点M′,作N关于OA的对称点N′,
连接M′N′,即为MP+PQ+QN的最小值.
根据轴对称的定义可知:∠N′OQ=∠M′OB=30°,∠ONN′=60°,
∴△ONN′为等边三角形,△OMM′为等边三角形,
∴∠N′OM′=90°,
∴在Rt△M′ON′中,
M′N′=$\sqrt{{3}^{2}+{1}^{2}}$=$\sqrt{10}$.
故答案为$\sqrt{10}$.

点评 本题考查了轴对称--最短路径问题,根据轴对称的定义,找到相等的线段,得到等边三角形是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

12.如图,直角坐标系中,点A(3,0)、B(0,4)分别位于x轴和y轴上,点C在x轴的负半轴上,且∠ACB=60°,在y轴正半轴上有一点M,以M为圆心,MO为半径作⊙M与BA相切,若保持圆的大小不变,△ABC位置不变,将⊙M向右平移$\frac{\sqrt{3}}{6}$个单位,⊙M与BC相切.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.如图,在△ABC中,DE∥BC,AH⊥BC于点H,与DE交于点G.若$\frac{AG}{GH}=\frac{3}{2}$,则$\frac{DE}{BC}$=$\frac{3}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,在平面直角坐标系中,直线AB与x轴交于点A(4,0),与y轴交于点B(0,4),抛物线y=x2-4x+4的顶点为E.点C的坐标为(0,m)(m≠4),点C关于AB的对称点是点D,连结BD,CD,CE,DE
(1)当点C在线段OB上时,求证:△BCD是等腰直角三角形;
(2)当m>0时,若△CDE为直角三角形,求tan∠CEO的值;
(3)设点P是该抛物线上一点,是否存在m的值,使以P,C,D,E为顶点的四边形为平行四边形?若存在,请直接写出所有满足条件的m的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.(1)如图1,纸片?ABCD中,AD=5,S?ABCD=15,过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE′的位置,拼成四边形AEE′D,则四边形AEE′D的形状为C
A.平行四边形  B.菱形   C.矩形    D.正方形
(2)如图2,在(1)中的四边形纸片AEE′D中,在EE′上取一点F,使EF=4,剪下△AEF,将它平移至△DE′F′的位置,拼成四边形AFF′D.
①求证:四边形AFF′D是菱形.
②求四边形AFF′D的两条对角线的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.2015年1月,市教育局在全市中小学中选取了63所学校从学生的思想品德、学业水平、学业负担、身心发展和兴趣特长五个维度进行了综合评价.评价小组在选取的某中学七年级全体学生中随机抽取了若干名学生进行问卷调查,了解他们每天在课外用于学习的时间,并绘制成如下不完整的统计图.

根据上述信息,解答下列问题:
(1)本次抽取的学生人数是30;扇形统计图中的圆心角α等于144°;补全统计直方图;
(2)被抽取的学生还要进行一次50米跑测试,每5人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.现有三张反面朝上的扑克牌:红桃2、红桃3、黑桃x(1≤x≤13且x为奇数或偶数).把牌洗匀后第一次抽取一张,记好花色和数字后将牌放回,重新洗匀第二次再抽取一张.
(1)求两次抽得相同花色的概率;
(2)当甲选择x为奇数,乙选择x为偶数时,他们两次抽得的数字和是奇数的可能性大小一样吗?请说明理由.(提示:三张扑克牌可以分别简记为红2、红3、黑x)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.下列命题中是真命题的是(  )
A.若a>b,则ac2>bc2
B.对角线互相垂直且相等的四边形是正方形
C.两个等腰直角三角形一定相似
D.打开数学课本,恰好翻到第88页是必然事件

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.小明家、公交车站、学校在一条笔直的公路旁(小明家、学校到这条公路的距离忽略不计),一天,小明从家出发去上学,沿这条公路步行到公交车站恰好乘上一辆公交车,公交车沿这条公路匀速行驶,小明下车时发现还有4分钟上课,于是他沿这条公路跑步赶到学校(上、下车时间忽略不计),小明与家的距离s(单位:米)与他所用时间t(单位:分钟)之间的函数关系如图所示,已知小明从家出发7分钟时与家的距离为1200米,从上公交车到他到达学校共用10分钟,下列说法:
①小明从家出发5分钟时乘上公交车             ②公交车的速度为400米/分钟
③小明下公交车后跑向学校的速度为100米/分钟  ④小明上课没有迟到
其中正确的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

同步练习册答案