精英家教网 > 初中数学 > 题目详情
(2012•抚顺)如图,过点P(2,3)分别作PC⊥x轴于点C,PD⊥y轴于点D,PC、PD分别交反比例函数y=
2
x
(x>0)的图象于点A、B,则四边形BOAP的面积为(  )
分析:根据反比例函数系数k的几何意义可得S△DBO=S△AOC=
1
2
|k|=1,再利用矩形OCPD的面积减去△BDO和△CAO的面积即可.
解答:解:∵B、A两点在反比例函数y=
2
x
(x>0)的图象上,
∴S△DBO=S△AOC=
1
2
×2=1,
∵P(2,3),
∴四边形DPCO的面积为2×3=6,
∴四边形BOAP的面积为6-1-1=4,
故选:C.
点评:此题主要考查了反比例函数k的几何意义,关键是掌握在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是
1
2
|k|,且保持不变.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•抚顺)如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°.点D是直线BC上的一个动点,连接AD,并以AD为边在AD的右侧作等边△ADE.
(1)如图①,当点E恰好在线段BC上时,请判断线段DE和BE的数量关系,并结合图①证明你的结论;
(2)当点E不在直线BC上时,连接BE,其它条件不变,(1)中结论是否成立?若成立,请结合图②给予证明;若不成立,请直接写出新的结论;
(3)若AC=3,点D在直线BC上移动的过程中,是否存在以A、C、D、E为顶点的四边形是梯形?如果存在,直接写出线段CD的长度;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•抚顺)如图,是五个相同的小正方体搭成的几何体,其主视图是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•抚顺)如图,小浩从二次函数y=ax2+bx+c(a≠0)的图象中得到如下信息:
①ab<0     
②4a+b=0    
③当y=5时只能得x=0   
④关于x的一元二次方程ax2+bx+c=10有两个不相等的实数根,
你认为其中正确的有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•抚顺)如图,已知一次函数y=-
1
2
x+b的图象经过点A(2,3),AB⊥x轴,垂足为B,连接OA.
(1)求此一次函数的解析式;
(2)设点P为直线y=-
1
2
x+b上的一点,且在第一象限内,经过P作x轴的垂线,垂足为Q.若S△POQ=
5
4
S△AOB,求点P的坐标.

查看答案和解析>>

同步练习册答案