精英家教网 > 初中数学 > 题目详情
已知抛物线C1的顶点为P(1,0),且过点(0,).将抛物线C1向下平移h个单位(h>0)得到抛物线C2.一条平行于x轴的直线与两条抛物线交于A、B、C、D四点(如图),且点A、C关于y轴对称,直线AB与x轴的距离是m2(m>0).

(1)求抛物线C1的解析式的一般形式;
(2)当m=2时,求h的值;
(3)若抛物线C1的对称轴与直线AB交于点E,与抛物线C2交于点F.求证:tan∠EDF﹣tan∠ECP=
解:(1)设抛物线C1的顶点式形式(a≠0),
∵抛物线过点(0,),∴,解得a=
∴抛物线C1的解析式为,一般形式为
(2)当m=2时,m2=4,
∵BC∥x轴,∴点B、C的纵坐标为4。
,解得x1=5,x2=﹣3。
∴点B(﹣3,4),C(5,4)。
∵点A、C关于y轴对称,∴点A的坐标为(﹣5,4)。
设抛物线C2的解析式为
,解得h=5。
(3)证明:∵直线AB与x轴的距离是m2,∴点B、C的纵坐标为m2
,解得x1=1+2m,x2=1﹣2m。
∴点C的坐标为(1+2m,m2)。
又∵抛物线C1的对称轴为直线x=1,∴CE=1+2m﹣1=2m。
∵点A、C关于y轴对称,∴点A的坐标为(﹣1﹣2m,m2)。

设抛物线C2的解析式为
,解得h=2m+1。
∴EF=h+m2=m2+2m+1。

试题分析:(1)设抛物线C1的顶点式形式(a≠0),然后把点(0,)代入求出a的值,再化为一般形式即可。
(2)先根据m的值求出直线AB与x轴的距离,从而得到点B、C的纵坐标,然后利用抛物线解析式求出点C的横坐标,再根据关于y轴对称的点的横坐标互为相反数,纵坐标相同求出点A的坐标,然后根据平移的性质设出抛物线C2的解析式,再把点A的坐标代入求出h的值即可。
(3)先把直线AB与x轴的距离是m2代入抛物线C1的解析式求出C的坐标,从而求出CE,再表示出点A的坐标,根据抛物线的对称性表示出ED,根据平移的性质设出抛物线C2的解析式,把点A的坐标代入求出h的值,然后表示出EF,最后根据锐角的正切值等于对边比邻边列式整理即可得证。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

(本小题满分12分)如图,四边形OABC为直角梯形,A(4,0),B(3,4),C(0,4).点M从O出发以每秒2个单位长度的速度向A运动;点N从B同时出发,以每秒1个单位长度的速度向C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP垂直x轴于点P,连接AC交NP于Q,连接MQ.

(1)点     (填M或N)能到达终点;
(2)求△AQM的面积S与运动时间t的函数关系式,并写出自变量t的取值范围,当t为何值时,S的值最大;
(3)是否存在点M,使得△AQM为直角三角形?若存在,求出点M的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

二次函数y=一x2+ax+b图象与轴交于,两点,且与轴交于点.

(1)则的形状为                 
(2)在此抛物线上一动点,使得以四点为顶点的四边形是梯形,则点的坐标为                     .

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线经过点A(6,0)、B(0,-4).

(1)求该抛物线的解析式;
(2)若抛物线对称轴与x轴交于点C,连接BC,点P在抛物线对称轴上,使△PBC为等腰三角形,请写出符合条件的所有点P坐标.(直接写出答案)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

综合与探究:如图,抛物线与x轴交于A,B两点(点B在点A的右侧)与y轴交于点C,连接BC,以BC为一边,点O为对称中心作菱形BDEC,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q。

(1)求点A,B,C的坐标。
(2)当点P在线段OB上运动时,直线l分别交BD,BC于点M,N。试探究m为何值时,四边形CQMD是平行四边形,此时,请判断四边形CQBM的形状,并说明理由。
(3)当点P在线段EB上运动时,是否存在点 Q,使△BDQ为直角三角形,若存在,请直接写出点Q的坐标;若不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线与x轴交于点A(1,0),B(3,0),且过点C(0,﹣3).

(1)求抛物线的解析式和顶点坐标;
(2)请你写出一种平移的方法,使平移后抛物线的顶点落在直线y=﹣x上,并写出平移后抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,已知抛物线C经过原点,对称轴与抛物线相交于第三象限的点M,与x轴相交于点N,且

(1)求抛物线C的解析式;
(2)将抛物线C绕原点O旋转1800得到抛物线,抛物线与x轴的另一交点为A,B为抛物线上横坐标为2的点。
①若P为线段AB上一动点,PD⊥y轴于点D,求△APD面积的最大值;
②过线段OA上的两点E、F分别作x轴的垂线,交折线O-B-A于E1、F1,再分别以线段EE1、FF1为边作如图2所示的等边△AE1E2、等边△AF1F2,点E以每秒1个长度单位的速度从点O向点A运动,点F以每秒1个长度单位的速度从点A向点O运动,当△AE1E2有一边与△AF1F2的某一边在同一直线上时,求时间t的值。

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数的图像与图像的形状、开口方向相同,只是位置不同,则二次函数的顶点坐标是
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数的图象如图所示,对于下列结论:①a<0;②b<0;③c>0;④b+2a=0;⑤a+b+c<0.其中正确的个数是【   】
A.1个B.2个C.3个D.4个

查看答案和解析>>

同步练习册答案