精英家教网 > 初中数学 > 题目详情
(2006•成都)下列运算正确的是( )
A.4a2-(2a)2=2a2
B.(-a2)•a3=a6
C.(-2x23=-8x6
D.(-x)2÷x=-
【答案】分析:分别根据同底数幂的乘法与除法、幂的乘方、合并同类项的法则逐一计算即可.
解答:解:A、错误,应为4a2-(2a)2=4a2-4a2=0;
B、错误,应为(-a2)•a3=-a5
C、(-2x23=-8x6,正确;
D、错误,应为(-x)2÷x=x2÷x=x.
故选C.
点评:本题考查了合并同类项,同底数幂的乘法和除法,幂的乘方,熟练掌握运算性质是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2006•成都二模)如图,在正方形铁皮上剪下一个圆和扇形(圆与扇形外切,且与正方形的边相切),使之恰好围成如图所示的一个圆锥模型,设圆半径为r,扇形半径为R,则R与r的关系是(  )

查看答案和解析>>

科目:初中数学 来源:2006年全国中考数学试题汇编《二次函数》(10)(解析版) 题型:解答题

(2006•成都)如图,在平面直角坐标系中,已知点B(-2,0),A(m,0)(-<m<0),以AB为边在x轴下方作正方形ABCD,点E是线段OD与正方形ABCD的外接圆除点D以外的另一个交点,连接BE与AD相交于点F.
(1)求证:BF=DO;
(2)设直线l是△BDO的边BO的垂直平分线,且与BE相交于点G.若G是△BDO的外心,试求经过B、F、O三点的抛物线的解析表达式;
(3)在(2)的条件下,在抛物线上是否存在点P,使该点关于直线BE的对称点在x轴上?若存在,求出所有这样的点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2006年四川省成都市中考数学试卷(课标卷)(解析版) 题型:解答题

(2006•成都)如图,在平面直角坐标系中,已知点B(-2,0),A(m,0)(-<m<0),以AB为边在x轴下方作正方形ABCD,点E是线段OD与正方形ABCD的外接圆除点D以外的另一个交点,连接BE与AD相交于点F.
(1)求证:BF=DO;
(2)设直线l是△BDO的边BO的垂直平分线,且与BE相交于点G.若G是△BDO的外心,试求经过B、F、O三点的抛物线的解析表达式;
(3)在(2)的条件下,在抛物线上是否存在点P,使该点关于直线BE的对称点在x轴上?若存在,求出所有这样的点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2006年全国中考数学试题汇编《相交线与平行线》(03)(解析版) 题型:解答题

(2006•成都)已知:如图,在正方形ABCD中,AD=12,点E是边CD上的动点(点E不与端点C,D重合),AE的垂直平分线FP分别交AD,AE,BC于点F,H,G,交AB的延长线于点P.
(1)设DE=m(0<m<12),试用含m的代数式表示的值;
(2)在(1)的条件下,当时,求BP的长.

查看答案和解析>>

科目:初中数学 来源:2009年湖北省荆门市京山县宋河镇中心校中考数学三模试卷(解析版) 题型:解答题

(2006•成都)小英和小强做一个“配色”的游戏.下图是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,并涂上图中所示的颜色.同时转动两个转盘,如果转盘A转出了红色,转盘B转出了蓝色,或者转盘A转出了蓝色,转盘B转出了红色,则红色和蓝色在一起配成紫色,这种情况下小英获胜;同样,蓝色和黄色在一起配成绿色,这种情况下小强获胜;在其它情况下,则小英、小强不分胜负.
(1)利用列表或树状图的方法表示此游戏所有可能出现的结果;
(2)此游戏的规则,对双方都公平吗?如果公平,请说明理由;如果不公平,请修改游戏规则,使得游戏对双方都公平.

查看答案和解析>>

同步练习册答案