精英家教网 > 初中数学 > 题目详情
如图,点M(m,n)在第一象限,且2
m-4
+3
8-2m
=n-4
,过O、M两点作圆分别与x轴正半轴,y轴正半轴交于A、B两点,C在弧AO上,BC交OM于D,且CO=CD.
(1)求M点的坐标;
(2)若∠BDM=60°,连AM,求
AM
OB
的值;
(3)过D作DH⊥AB于H,下列结论:①DH+
1
2
AB的值不变;②DH+AB的值不变,其中有且只有一个结论是正确的,请你作出正确判断并予以证明.
分析:(1)根据二次根式有意义的条件可以求得m、n的值,即可求出点M的坐标;
(2))根据AB是直径,∠BOM=∠MOA=45°,得出△MAB是等腰直角三角形,再根据∠BDM=60°,得出△OCD是等边三角形,即可得出∠BAO=∠BMO=60°,最后根据∠BDM=60°,得出△DBM是等边三角形,从而求出
AM
OB
的值;
(3)先证出D为△BOA内心,再过点D作DF⊥OA于点F,DE⊥BO于点E,得出四边形EOFD是正方形,即可证出OA+OB=2HD+AB,再过点M做MG⊥x轴,MN⊥y轴,垂足分别为G,N,
证出△BMN≌△AMG,即可得出OB+OA=8,从而得出①的值不变.
解答:解:(1)∵2
m-4
+3
8-2m
=n-4

m-4≥0
8-2m≥0

解得,m=4,
∴n=4,
∴M点的坐标(4,4);

(2)∵AB是直径,∠BOM=∠MOA=45°,
∴等腰Rt△MAB,AM=
2
2
AB,
∵∠BDM=60°,
∴∠ODC=60°,
∵CO=CD,
∴△OCD是等边三角形,
∴∠BAO=∠BMO=60°,
∵∠BDM=60°,
∴△DBM是等边三角形,
∴OB=
3
2
AB,
AM
OB
=
2
3
=
6
3


(3)由图可知:
∵CO=CD,∠ODC=∠D0C,
∴∠ODC=45°+∠OBC,∠D0C=45°+∠AOC=45°+∠ABC,
∴∠OBC=∠ABC,D为△BOA内心,
过点D作DF⊥OA于点F,DE⊥BO于点E,
∴DH=DE=DF,BH=BE,AH=AF,
∠DEO=∠EOF=∠OFD=90°,
∴四边形EOFD是正方形,
∴BE+AF=BH+AF=AB,
∴OA+OB=OE+BE+OF+AF=DH+BE+DH+AF=2HD+AB,
过点M做MG⊥x轴,MN⊥y轴,垂足分别为G,N,
则MG=MN=4,
∴ON=OG=4,
又∵∠BAM=∠BOM=45°,
∠ABM=∠MOA=45°,
∴∠ABM=∠BAM,
∴MB=MA,
∴△BMN≌△AMG,
∴BN=AG,
∴OB+OA=ON+BN+OA=ON+AG+OA=ON+OG=4+4=8,
∴2HD+AB=8,
∴HD+
1
2
AB=4,
故①DH+
1
2
AB的值不变.
点评:此题考查了三角形内切圆与内心,用到的知识点是等边三角形的判定与性质、正方形的性质、全等三角形的判定和性质、二次根式有意义的条件等,解题的关键是根据题意作出辅助线.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,点A、B在数轴上,它们所对应的数分别是-4、
2x+23x-1
,且点A、B关于原点O对称,求x的值.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点A为⊙O直径CB延长线上一点,过点A作⊙O的切线AD,切点为D,过点D作DE⊥AC,垂足为F,连接精英家教网BE、CD、CE,已知∠BED=30°.
(1)求tanA的值;
(2)若AB=2,试求CE的长.
(3)在(2)的条件下,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,点A的坐标为(2
2
,0
),点B在直线y=-x上运动,当线段AB最短时,点B的坐标为(  )
A、(0,0)
B、(
2
2
,-
2
2
)
C、(1,1)
D、(
2
,-
2
)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点A、B在线段MN上,则图中共有
 
条线段.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

12、如图,点O到直线l的距离为3,如果以点O为圆心的圆上只有两点到直线l的距离为1,则该圆的半径r的取值范围是
2<r<4

查看答案和解析>>

同步练习册答案