精英家教网 > 初中数学 > 题目详情

如图,四边形ABCD中,∠BAD=∠ACB=90º,AB=AD,AC=4BC,设CD的长为,四边形ABCD的面积为,则之间的函数关系式是(   )

A.         B.

C.        D.

 

【答案】

B

【解析】

试题分析:将△ABC绕点A逆时针旋转90°到△ADE的位置,根据全等三角形的性质,结合勾股定理,把梯形的上底DE,下底AC,高DF分别用含x的式子表示,即可得到结果.

如图,作AE⊥AC,DE⊥AE,两线交于E点,作DF⊥AC垂足为F点,

∵∠BAD=∠CAE=90°,即∠BAC+∠CAD=∠CAD+∠DAE

∴∠BAC=∠DAE

又∵AB=AD,∠ACB=∠E=90°

∴△ABC≌△ADE(AAS)

∴BC=DE,AC=AE,

设BC=a,则DE=a,DF=AE=AC=4BC=4a,

CF=AC-AF=AC-DE=3a,

在Rt△CDF中,由勾股定理得,

,即

解得

故选C.

考点:本题考查的是根据实际问题列二次函数关系式

点评:本题运用了旋转的性质,将求不规则四边形的面积问题转化为求梯形的面积,充分体现了全等三角形,勾股定理再解题中的作用.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC与BD互相垂直平分于点O,设AC=2a,BD=2b,请推导这个四边形的性质.(至少3条)
(提示:平面图形的性质通常从它的边、内角、对角线、周长、面积等入手.)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC、BD交于点P,过点P作直线交AD于点E,交BC于点F.若PE=PF,且AP+AE=CP+CF.
(1)求证:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,四边形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD为正方形,E是BC的延长线上的一点,且AC=CE,求∠DAE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.

(I)求证:AE=EF;
(Ⅱ)若将条件中的“点E是BC的中点”改为“E是BC上任意一点”,其余条件不变,则结论AE=EF还成立吗?若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

同步练习册答案