精英家教网 > 初中数学 > 题目详情

应用题数学课上,李老师编制了一个程序,当输入任意一个有理数时,显示屏上的结果总是所输入的有理数的平方与1的差的2倍,若输入-1,并将显示的结果再次输入,这时显示的结果是


  1. A.
    0
  2. B.
    -1
  3. C.
    -2
  4. D.
    -4
C
精析:先根据题意设出未知数,即用x来表示输入的这个有理数,则显示的结果就是2(x2-1),若输入-1时,则显示2[(-1)2-1]=0,再次输入0后,显示的结果是2(02-1)=-2.
小结:数学学科与信息技术结合,既能培养分析能力和操作能力,又能加深对代数式的值的理解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、数学课上,李老师出示了如下框中的题目.

小敏与同桌小聪讨论后,进行了如下解答:
(1)特殊情况•探索结论
当点E为AB的中点时,如图1,确定线段AE与的DB大小关系.请你直接写出结论:AE
=
DB(填“>”,“<”或“=”).

(2)特例启发,解答題目
解:题目中,AE与DB的大小关系是:AE
=
DB(填“>”,“<”或“=”).理由如下:
如图2,过点E作EF∥BC,交AC于点F,(请你完成以下解答过程)
(3)拓展结论,设计新题
在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为1,AE=2,求CD的长(请你直接写出结果).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•漳州)(1)问题探究
数学课上,李老师给出以下命题,要求加以证明.
如图1,在△ABC中,M为BC的中点,且MA=
12
BC,求证∠BAC=90°.
同学们经过思考、讨论、交流,得到以下证明思路:
思路一 直接利用等腰三角形性质和三角形内角和定理…
思路二 延长AM到D使DM=MA,连接DB,DC,利用矩形的知识…
思路三 以BC为直径作圆,利用圆的知识…
思路四…
请选择一种方法写出完整的证明过程;
(2)结论应用
李老师要求同学们很好地理解(1)中命题的条件和结论,并直接运用(1)命题的结论完成以下两道题:
①如图2,线段AB经过圆心O,交⊙O于点A,C,点D在⊙O上,且∠DAB=30°,OA=a,OB=2a,求证:直线BD是⊙0的切线;
②如图3,△ABC中,M为BC的中点,BD⊥AC于D,E在AB边上,且EM=DM,连接DE,CE,如果∠A=60°,请求出△ADE与△ABC面积的比值.

查看答案和解析>>

科目:初中数学 来源: 题型:

数学课上,李老师出示了如下的题目:
“在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC,如图,试确定线段AE与DB的大小关系,并说明理由”.
小敏与同桌小聪讨论后,进行了如下解答:
(1)特殊情况,探索结论
当点E为AB的中点时,如图1,确定线段AE与DB的大小关系,请你直接写出结论:AE
=
=
DB(填“>”,“<”或“=”).
 (2)特例启发,解答题目
解:题目中,AE与DB的大小关系是:AE
=
=
DB(填“>”,“<”或“=”).理由如下:如图2,过点E作EF∥BC,交AC于点F.(请你完成以下解答过程)
(3)拓展结论,设计新题
在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为1,AE=2,求CD的长(请你直接写出结果).

查看答案和解析>>

科目:初中数学 来源:新课标读想用  七年级数学(上)(北师大版) 题型:013

应用题

数学课上,李老师编制了一个程序,当输入任意一个有理数时,显示屏上的结果总是所输入的有理数的平方与1的差的2倍,若输入-1,并将显示的结果再次输入,这时显示的结果是

[  ]

A.0
B.-1
C.-2
D.-4

查看答案和解析>>

同步练习册答案