精英家教网 > 初中数学 > 题目详情

已知在△ABC中,AB=AC=5,BC=6,AD是BC边上的中线,四边形ADBE是平行四边形.
(1)求证:四边形ADBE是矩形;
(2)求矩形ADBE的面积.

解:(1)∵AB=AC,AD是BC的边上的中线,
∴AD⊥BC,
∴∠ADB=90°,
∵四边形ADBE是平行四边形.
∴平行四边形ADBE是矩形;

(2)∵AB=AC=5,BC=6,AD是BC的中线,
∴BD=DC=6×=3,
在直角△ACD中,
AD===4,
∴S矩形ADBE=BD•AD=3×4=12.
分析:(1)利用三线合一定理可以证得∠ADB=90°,根据矩形的定义即可证得;
(2)利用勾股定理求得BD的长,然后利用矩形的面积公式即可求解.
点评:本题考查了三线合一定理以及矩形的判定,理解三线合一定理是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知在△ABC中,AB=AC=5,BC=8,点G为重心,那么GA=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

22、如图,已知在△ABC中,∠A=(2x+10)°,∠B=(3x)°,∠ACD是△ABC的一个外角,且∠ACD=(6x-10)°,求∠A的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知在△ABC中,∠BAC=90°,AC=4,BC=4
5
,若点D、E、F分别为AB、BC、AC边的中点,点P为AB边上的一个动点(且不与点A、B重合),PQ∥AC,且交BC于点Q,以PQ为一边在点B的异侧作正方形PQMN,设正方形PQMN与矩形ADEF的公共部分的面积为S,BP的长为x,试求S与x之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知在△ABC中,∠BAC为直角,AB=AC,D为AC上一点,CE⊥BD于E.若BD平分∠ABC.
求证:CE=
12
BD.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在△ABC中,∠B与∠C的平分线交于点P.
(1)当∠A=70°时,求∠BPC的度数;
(2)当∠A=112°时,求∠BPC的度数;
(3)当∠A=α时,求∠BPC的度数.

查看答案和解析>>

同步练习册答案