精英家教网 > 初中数学 > 题目详情
如图①有一个宝塔,他的地基边缘是周长为26m的正五边形ABCDE(如图②),点O为中心.(下列各题结果精确到0.1m)
(1)求地基的中心到边缘的距离;
(2)己知塔的墙体宽为1m,现要在塔的底层中心建一圆形底座的塑像,并且留出最窄处为1.6m的观光通道,问塑像底座的半径最大是多少?
(1)作OM⊥AB于点M,连接OA、OB,则OM为边心距,∠AOB是中心角.
由正五边形性质得∠AOB=360°÷5=72°.
又AB=
1
5
×26=5.2,
∴AM=2.6,∠AOM=36°,
在Rt△AMO中,边心距OM=
AM
tan36°
=
2.6
tan36°
≈3.6(m);

(2)3.6-1-1.6=1(m).
答:地基的中心到边缘的距离约为3.6m,塑像底座的半径最大约为1m.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,正方形ABCD是⊙O的内接正方形,点P在劣弧
CD
上不同于点C得到任意一点,则∠BPC的度数是______度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知在⊙O中,直径MN=10,正方形ABCD的四个顶点分别在⊙O及半径OM、OP上,并且∠POM=45°,则AB的长为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,有一个圆O和两个正六边形T1,T2. T1的6个顶点都在圆周上,T2的6条边都和圆O相切(我们称T1,T2别为圆O的内接正六边形和外切正六边形).
(1)设T1,T2的边长分别为a,b,圆O的半径为r,求r:a及r:b的值;
(2)求正六边形T1,T2的面积比S1:S2的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,△ABC中,E、F分别是AB、AC上的点.
①AD平分∠BAC,②DE⊥AB,DF⊥AC,③AD⊥EF.
以此三个中的两个为条件,另一个为结论,可构成三个命题,即:
①②?③,①③?②,②③?①.
(1)试判断上述三个命题是否正确(直接作答);
(2)请证明你认为正确的命题.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

线段AB是圆内接正十边形的一条边,则AB所对的圆周角的度数是______度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

小赵对芜湖科技馆富有创意的科学方舟形象设计很有兴趣,他回家后将一正五边形纸片沿其对称轴对折.旋转放置,做成科学方舟模型.如图所示,该正五边形的边心距OB长为
2
,AC为科学方舟船头A到船底的距离,请你计算AC+
1
2
AB=______.(不能用三角函数表达式表示)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

两圆半径之比为2:3,小圆外切正六边形与大圆内接正六边形面积之比为(  )
A.2:3B.4:9C.16:27D.4:3
3

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

边长为4a的正六边形的面积为______.

查看答案和解析>>

同步练习册答案