精英家教网 > 初中数学 > 题目详情
19.在△ABC中,∠C=90°,AD平分∠BAC交BC于点D.
(1)若BC=16,BD:CD=5:3,则点D到AB的距离是6;
(2)若BD:CD=3:2,点D到AB的距离是4,则BC的长为10.

分析 (1)作DE⊥AB于E,根据题意求出CD的长,根据角平分线的性质计算即可;
(2)根据角平分线的性质求出CD的长,计算即可.

解答 解:(1)作DE⊥AB于E,
∵BD:CD=5:3,BC=16,
∴CD=6,
∵AD平分∠BAC,∠C=90°,DE⊥AB,
∴DE=DC=6,
故答案为:6;
(2)∵D到AB的距离是4,
∴DE=4,
∵AD平分∠BAC,∠C=90°,DE⊥AB,
∴DC=DE=4,又BD:CD=3:2,
∴BD=6,
∴BC=BD+CD=10,
故答案为:10.

点评 本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

9.网上购物已成为现代人消费的趋势.2014年,天猫“双十一”当天交易额已超571亿元.571亿用科学记数法表示为5.71×1010

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.如图,已知AB切⊙O于点B,OA与⊙O交于点C,点P在⊙O上,若∠BPC=25°,则∠BAC的度数为40°.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.请举反例说明命题“如果a2=b2,那么a=b”是假命题,反例可举:当a=-2,b=2时,a2=b2,此时a=-b.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如图,菱形ABCD的边长为4,∠ABC=45°,则点D的坐标为(4+2$\sqrt{2}$,2$\sqrt{2}$).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.数轴上表示到原点的距离是$\sqrt{6}$的点表示的数是-$\sqrt{6}$,$\sqrt{6}$,与表示$\sqrt{3}$的点距离最近的整数点表示的数是2,绝对值小于$\sqrt{5}$的所有整数是-2,-1,0,1,2.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.把下列各数填入相应的括号内:
3$\frac{1}{2}$,-$\frac{22}{7}$,-2,0,3,$\frac{π}{3}$,0.5,3.14159,-0.0200200020,0.121121112…(相邻两个2之间依次增加一个1).
(1)有理数集合{3$\frac{1}{2}$,-$\frac{22}{7}$,-2,0,3,0.5,3.14159,-0.0200200020…};
(2)无理数集合{$\frac{π}{3}$,0.121121112…(相邻两个2之间依次增加一个1)…};
(3)负整数集合{-2…}.
(4)负分数集合{-$\frac{22}{7}$,-0.0200200020…}.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.已知,∠AOB=30°,点M1,M2,M3…在射线OB上,点N1,N2,N3…在射线0A上,△M1N1M2,△M2N2M3,△M3N3M4…均为等边三角形.若OM1=1,则△M9N9M10长为(  )
A.32B.64C.128D.256

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.下列运算正确的是(  )
A.a2•a3=a6B.4a8÷2a2=2a6C.(3a32=6a6D.(2a+3)2=4a2+9

查看答案和解析>>

同步练习册答案