精英家教网 > 初中数学 > 题目详情
9.为了维护海洋权益,新组建的国家海洋局加大了在南海的巡逻力度,一天,我两艘海监船刚好在我某岛东西海岸线上的A、B两处巡逻,同时发现一艘不明国籍的船只停在C处海域.如图所示,AB=60($\sqrt{6}+\sqrt{2}$)海里,在B处测得C在北偏东45°的方向上,A处测得C在北偏西30°的方向上,在海岸线AB上有一灯塔D,测得AD=120($\sqrt{6}-\sqrt{2}$)海里.
(1)分别求出A与C及B与C的距离AC、BC(结果保留根号)
(2)已知在灯塔D周围100海里范围内有暗礁群,我在A处海监船沿AC前往C处盘查,图中有无触礁的危险?
(参考数据:$\sqrt{2}$=1.41,$\sqrt{3}$=1.73,$\sqrt{6}$=2.45)

分析 (1)如图所示,过点C作CE⊥AB于点E,可求得∠CBD=45°,∠CAD=60°,设CE=x,在Rt△CBE与Rt△CAE中,分别表示出BE、AE的长度,然后根据AB=60($\sqrt{6}+\sqrt{2}$)海里,代入BE、AE的式子,求出x的值,继而可求出AC、BC的长度;
(2)如图所示,过点D作DF⊥AC于点F,在△ADF中,根据AD的值,利用三角函数的知识求出DF的长度,然后与100比较,进行判断.

解答 解:(1)如图所示,过点C作CE⊥AB于点E,
可得∠CBD=45°,∠CAD=60°,
设CE=x,
在Rt△CBE中,BE=CE=x,
在Rt△CAE中,AE=$\frac{\sqrt{3}}{3}$x,
∵AB=60($\sqrt{6}+\sqrt{2}$)海里,
∴x+$\frac{\sqrt{3}}{3}$x=60($\sqrt{6}+\sqrt{2}$),
解得:x=60$\sqrt{6}$,
则AC=$\frac{2\sqrt{3}}{3}$x=120$\sqrt{2}$,
BC=$\sqrt{2}$x=120$\sqrt{3}$,
答:A与C的距离为120$\sqrt{2}$海里,B与C的距离为120$\sqrt{3}$海里;
(2)如图所示,过点D作DF⊥AC于点F,
在△ADF中,
∵AD=120($\sqrt{6}-\sqrt{2}$),∠CAD=60°,
∴DF=ADsin60°=180$\sqrt{2}$-60$\sqrt{6}$≈106.8>100,
故海监船沿AC前往C处盘查,无触礁的危险.

点评 本题考查了解直角三角形的应用,解答本题的关键是根据题目中所给方向角构造直角三角形,然后利用三角函数的知识求解,难度适中.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

19.已知D为△ABC边BC上的一个动点(不与B,C重合),过D作DE∥AC交AB于点E,作DF∥AB交AC于点F.
(1)证明:△BDE∽△DCF;
(2)若△ABC的面积为10,点G为线段AF上的任意一点,设FC:AC=n,△DEG的面积为S,求S关于n的关系式,并求S的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.计算:
(1)(-3)2-(+4$\frac{2}{3}$)+(-1$\frac{1}{6}$)
(2)$\sqrt{2\frac{1}{4}}$-$\sqrt{3}$cos30°.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.已知下列命题:
①同位角相等;
②若a>b>0,则$\frac{1}{a}<\frac{1}{b}$;
③对角线相等且互相垂直的四边形是正方形;
④抛物线y=x2-2x与坐标轴有3个不同交点;
⑤边长相等的多边形内角都相等.
其中正确的命题有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.将如图绕AB边旋转一周,所得几何体的俯视图为(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.某蛋糕产销公司A品牌产销线,2015年的销售量为9.5万份,平均每份获利1.9元,预计以后四年每年销售量按5000份递减,平均每份获利按一定百分数逐年递减;受供给侧改革的启发,公司早在2014年底就投入资金10.89万元,新增一条B品牌产销线,以满足市场对蛋糕的多元需求,B品牌产销线2015年的销售量为1.8万份,平均每份获利3元,预计以后四年销售量按相同的份数递增,且平均每份获利按上述递减百分数的2倍逐年递增;这样,2016年,A、B两品牌产销线销售量总和将达到11.4万份,B品牌产销线2017年销售获利恰好等于当初的投入资金数.
(1)求A品牌产销线2018年的销售量;
(2)求B品牌产销线2016年平均每份获利增长的百分数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.某一公路的道路维修工程,准备从甲、乙两个工程队选一个队单独完成.根据两队每天的工程费用和每天完成的工程量可知,若由两队合做此项维修工程,6天可以完成,共需工程费用385200元,若单独完成此项维修工程,甲队比乙队少用5天,每天的工程费用甲队比乙队多4000元,从节省资金的角度考虑,应该选择哪个工程队?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,AB是半圆O的直径,点P是BA延长线上一点,PC是⊙O的切线,切点为C,过点B作BD⊥PC交PC的延长线于点D,连接BC.求证:
(1)∠PBC=∠CBD;
(2)BC2=AB•BD.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.大学生自主创业,集资5万元开品牌专卖店,已知该品牌商品成本为每件a元,市场调查发现日销售量y(件)与销售价x(元/件)之间存在一次函数关系如表:
销售价x(元/件)110115120125 130
 
销售量y(件)50454035 30
 
若该店某天的销售价定为110元/件,雇有3名员工,则当天正好收支平衡(其中支出=商品成本+员工工资+应支付其它费用):已知员工的工资为每人每天100元,每天还应支付其它费用为200元(不包括集资款).
(1)求日销售量y(件)与销售价x(元/件)之间的函数关系式;
(2)该店现有2名员工,试求每件服装的销售价定为多少元时,该服装店每天的毛利润最大:(毛利润═销售收入一商品成本一员工工资一应支付其他费用)
(3)在(2)的条件下,若每天毛利润全部积累用于一次性还款,而集资款每天应按其万分之二的利率支付利息,则该店最少需要多少天(取整数)才能还清集资款?

查看答案和解析>>

同步练习册答案