精英家教网 > 初中数学 > 题目详情
5.已知:四边形ABCD中,对角的交点为O,E是OC上的一点,过点A作AG⊥BE于点G,AG、BD交于点F.
(1)如图1,若四边形ABCD是正方形,求证:OE=OF;
(2)如图2,若四边形ABCD是菱形,∠ABC=120°,探究线段OE与OF的数量关系,并说明理由.

分析 (1)根据正方形的对角线相等且互相垂直平分可得OA=OB,再根据同角的余角相等求出∠AFO=∠BEO,然后利用“角角边”证明△AOF和△BOE全等,根据全等三角形对应边相等证明即可;
(2)根据菱形的对角线互相垂直可得AC⊥BD,对角线平分一组对角可得∠ABO=60°,再根据等角的余角相等求出∠AFO=∠BEO,然后证明△AOF和△BOE相似,根据相似三角形对应边成比例可得 $\frac{OF}{OE}$=$\frac{AO}{OB}$,再根据锐角三角形函数的定义解答;

解答 证明:(1)∵四边形ABCD是正方形,对角线的交点为O,
∴AC=BD,OA=OC,OB=OD,
∴OA=OB,
∵AC⊥BD,AG⊥BE,
∴∠FAO+∠AFO=90°,∠EAG+∠AEG=90°,
∴∠AFO=∠BEO,
在△AOF和△BOE中,
$\left\{\begin{array}{l}{∠AFO=∠BEO}\\{∠FOA=∠EOB}\\{OA=OB}\end{array}\right.$,
∴△AOF≌△BOE(AAS),
∴OE=OF;

(2)OF=$\sqrt{3}$OE.
理由:∵四边形ABCD是菱形,对角线的交点为O,∠ABC=120°
∴AC⊥BD,∠ABO=60°,
∴∠FAO+∠AFO=90°,
∵AG⊥BE,
∴∠EAG+∠BEA=90°.
∴∠AFO=∠BEO,
又∵∠AOF=∠BOE=90°,
∴△AOF∽△BOE,
∴$\frac{OF}{OE}$=$\frac{AO}{OB}$,
∵∠ABO=60°,AC⊥BD,
∴$\frac{AO}{OB}$=tan60°=$\sqrt{3}$.
∴OF=$\sqrt{3}$OE;

点评 本题是四边形综合题型,主要利用了正方形的性质,全等三角形的判定与性质,菱形的对角线互相垂直平分的性质,等腰梯形的性质,以及相似三角形的判定与性质,锐角三角形函数,综合性较强,解题的关键是正确寻找全等三角形或相似三角形解决问题,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

1.甲、乙两个仓库向A、B两地运送水泥,已知甲库可调出100吨水泥,乙库可调出80吨水泥,A地需70吨,B地需110吨水泥,两库到A,B两地的路程和费用如下表:(表中运费“元/吨•千米”表示每吨水泥运送1千米所需要人民币).
路程(千米)运费(元/吨•千米)
甲库乙库甲库乙库
A地20151212
B地2520108
设甲库运往A地水泥x吨,总运费W元.
(1)写出w关于x的函数关系式,并求x为何值时总运费最小?
(2)如果要求运送的水泥数是10吨的整数倍,且运费不能超过38000元,则总共有几种运送方案?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.方程2x-4=0的解也是关于x的方程x2+mx+2=0的一个解,则方程x2+mx+2=0的另一个解为1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图.在四边形ABCD中.AC=BD,E,F分别为AB,CD的中点(O,M,N不重合),仔细观察你会发观.无论四边形ABCD的形状如何变化,只要保待对角线相等,则EF与两条对角线围成的三角形总是等腰三角形(图中的△OMN),请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.对有序数对(m,n)定义“f运算”:f(m,n)=($\frac{1}{2}$m+a,$\frac{1}{2}$n-b),其中a、b为常数.f运算的结果也是一个有序数对,在此基础上,可对平面直角坐标系中的任意一点A(x,y)规定“F变换”:点A(x,y)在F的变换下的对应点即为坐标为f(x,y)的点A′.
(1)当a=0,b=0时,f(-2,4)=(-1,2).
(2)若点P(2,-2)在F变换下的对应点是它本身,求a、b的值.
(3)坐标平面内有不共线的三点A、B、C,若它们在变换下的对应点分别为D、E、F且D、E、F也不共线,猜想△ABC与△DEF的面积之间的关系:S△ABC=4•S△DEF(用等式表示,不需要证明).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.现有一根长为1米的木杆,第1次截取其长度的一半,第2次截取其第1次剩下长度的一半,第3次截取其第2次剩下长度的一半,如此反复截取,则第n(n为正整数)次截取后,此木杆剩下的长度为$\frac{1}{{2}^{n}}$米.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图1,二次函数y=ax2+bx-4(a≠0)的图象与x轴交于A(3,0),B(-1,0)两点,与y轴交于点C.
(1)求该二次函数的解析式及点C的坐标;
(2)设该抛物线的顶点为D,求△ACD的面积;
(3)若点P,Q同时从A点出发,如图2(注:图2与图1完全相同),都以每秒1个单位长度的速度分别沿线段AB,AC运动,当其中一点到达终点时,另一点也随之停止运动,当P,Q运动到t秒时,将△APQ沿PQ所在直线翻折,点A恰好落在抛物线上E处,判定此时四边形APEQ的形状,说明理由,并求出点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.四边形ABCD的对角线交于点E,且AE=EC,BE=ED,以AB为直径的半圆过点E,圆心为O.
(1)利用图1,求证:四边形ABCD是菱形.
(2)如图2,若CD的延长线与半圆相切于点F,且直径AB=8.
①△ABD的面积为16.
②$\widehat{BE}$的长$\frac{2}{3}$π.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.某中学现要从两位男生和两位女生中,选派两位同学分别作为1号选手和2号选手代表学校参加汉字听写大赛.
(1)请用树形图或列表法列举出所有可能选派的结果;
(2)求恰好选派一男一女两位同学参赛的概率.

查看答案和解析>>

同步练习册答案