精英家教网 > 初中数学 > 题目详情
如图①,在长为6厘米,宽为3厘米的矩形PQMN中,有两张边长分别为二厘米和一厘米的正方形纸片ABCD和EFGH,且BC且在PQ上,PB=1厘米,PF=
1
2
厘米,从初始时刻开始,纸片ABCD沿PQ以2厘米每秒的速度向右平移,同时纸片EFGH沿PN以1厘米每秒的速度向上平移,当C点与Q点重合时,两张图片同时停止移动,设平移时间为t秒时,(如图②),纸片ABCD扫过的面积为S1,纸片EFGH扫过的面积为S2,AP,PG,GA所围成的图形面积为S(这里规定线段面积为零,扫过的面积含纸片面积).解答下列问题:
(1)当t=
1
2
时,PG=
 
,PA=
 
时,PA
 
PG+GA(填=或≠);
(2)求S与t之间的关系式;
(3)请探索是否存在t值(t>
1
2
),使S1+S2=4S+5.若存在,求出t值;若不存在,说明理由.精英家教网
分析:(1)PG=
12+12
=
2
,PA=
22+22
=2
2
,AG=
12+12
=
2
,∴PA=PG+GA.
(2)由(1)得当t=0.5时,G在AP上,那么可分G在△APB内和△APB外两种情况进行解答.
(3)按等量关系列出等式,根据t的取值范围得到所求.
解答:解:(1)当t=
1
2
时,PG=
2
,PA=2
2
,此时PA=PG+GA;(各1分)

(2)①当0≤t≤0.5时,连接GB
精英家教网
S△APG=S△APB-S△PGB-S△AGB
=
1
2
×2(2t+1)-
1
2
(2t+1)(t+0.5)-
1
2
×2×2t
=-t2-t+
3
4
(2分)
②当0.5<t≤1.5时,过A作AK⊥PN于K,连接KG
精英家教网
S△APG=S△APK-S△PGK-S△AGK
=
1
2
×2(2t+1)-
1
2
(2t+1)(1.5-t)-
1
2
×1×2
=t2+t-
3
4
(2分)

(3)存在
S1=2(2t+2)=4t+4,S2=t+1(1分)
若S1+S2=4S+5,则
4t+4+t+1=4(t2+t-
3
4
)+5,即4t2-t-3=0(1分)
∴t1=-
3
4
(舍去),t2=1(1分)
即当t=1时,S1+S2=4S+5.
点评:本题考查运动过程中面积的变化形式.注意扫过的面积应是原来正方形的面积+扫过矩形的面积.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,一个边长为3、4、5厘米的直角三角形的一个顶点与正方形的顶点B重合,另两个顶点分别在正方形的两条边AD、DC上,那么这个正方形的面积是
 
厘米2

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:等腰三角形ABC的两腰AC和BC长为5厘米,底边AB长为6厘米,如图,现有一长为1厘米的线段MN在△ABC的底边AB上沿AB方向以1厘米/秒的速度向B点运动(运动开始时,点M与点A重合,点N到达点B时运动终止),过点M、N分别作AB边的垂线,与△ABC的其它边交于P、Q两点,线段MN运动的时间为t秒.
(1)t=
2
2
时,Q点与C重合;此时PM=
8
3
8
3
厘米;
(2)线段MN在运动的过程中,t为何值时,四边形MNQP恰为矩形?并求出该矩形的面积;
(3)线段MN在运动的过程中,四边形MNQP的面积为S,运动的时间为t.求P、Q两点都在AC边上时四边形MNQP的面积S随运动时间t变化的函数关系式;
(4)简要说明从运动开始到终止四边形MNQP的面积S是如何变化的.

查看答案和解析>>

科目:初中数学 来源: 题型:044

在如图中,BC长为3厘米,AB长为4厘米,AF长为12厘米.求正方形CDEF的面积.

查看答案和解析>>

科目:初中数学 来源:2010年河北省唐山市滦南县青坨营中学中考数学模拟试卷(解析版) 题型:解答题

已知:等腰三角形ABC的两腰AC和BC长为5厘米,底边AB长为6厘米,如图,现有一长为1厘米的线段MN在△ABC的底边AB上沿AB方向以1厘米/秒的速度向B点运动(运动开始时,点M与点A重合,点N到达点B时运动终止),过点M、N分别作AB边的垂线,与△ABC的其它边交于P、Q两点,线段MN运动的时间为t秒.
(1)t=______时,Q点与C重合;此时PM=______厘米;
(2)线段MN在运动的过程中,t为何值时,四边形MNQP恰为矩形?并求出该矩形的面积;
(3)线段MN在运动的过程中,四边形MNQP的面积为S,运动的时间为t.求P、Q两点都在AC边上时四边形MNQP的面积S随运动时间t变化的函数关系式;
(4)简要说明从运动开始到终止四边形MNQP的面积S是如何变化的.

查看答案和解析>>

同步练习册答案