精英家教网 > 初中数学 > 题目详情
(2013•门头沟区一模)为测量操场上悬挂国旗的旗杆的高度,设计的测量方案如图所示:标杆高度CD=3m,标杆与旗杆的水平距离BD=15 m,人的眼睛与地面的高度EF=1.6m,人与标杆CD的水平距离DF=2m,E、C、A三点共线,则旗杆AB的高度为
13.5
13.5
米.
分析:利用三角形相似中的比例关系,首先由题目和图形可看出,求AB的长度分成了2个部分,AH和HB部分,其中HB=EF=1.6m,剩下的问题就是求AH的长度,利用△CGE∽△AHE,得出
CG
AH
=
EG
EH
,把相关条件代入即可求得AH=11.9,所以AB=AH+HB=AH+EF=13.5m.
解答:解:∵CD⊥FB,AB⊥FB,
∴CD∥AB,
∴△CGE∽△AHE,
CG
AH
=
EG
EH

即:
CD-EF
AH
=
FD
FD+BD

3-1.6
AH
=
2
2+15

∴AH=11.9,
∴AB=AH+HB=AH+EF=11.9+1.6=13.5(m).
故答案为:13.5.
点评:本题考查了相似三角形的应用,主要用到的解题思想是把梯形问题转化成三角形问题,利用三角形相似比列方程来求未知线段的长度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•门头沟区二模)PM2.5是大气中粒径小于等于2.5微米的颗粒物,称为细颗粒物,是表征环境空气质量的主要污染物指标.2.5微米等于0.0000025米,把0.0000025用科学记数法表示为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•门头沟区二模)已知圆锥侧面展开图的扇形半径为2cm,面积是
4
3
πcm2
,则扇形的弧长和圆心角的度数分别为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•门头沟区二模)如图,在平行四边形ABCD中,AC=12,BD=8,P是AC上的一个动点,过点P作EF∥BD,与平行四边形的两条边分别交于点E、F.设CP=x,EF=y,则下列图象中,能表示y与x的函数关系的图象大致是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•门头沟区二模)某中学初三年级的学生开展测量物体高度的实践活动,他们要测量一幢建筑物AB的高度.如图,他们先在点C处测得建筑物AB的顶点A的仰角为30°,然后向建筑物AB前进20m到达点D处,又测得点 A的仰角为60°,则建筑物AB的高度是
10
3
10
3
m.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•门头沟区二模)如图,在平面直角坐标系xOy中,已知矩形ABCD的两个顶点B、C的坐标分别是B(1,0)、C(3,0).直线AC与y轴交于点G(0,6).动点P从点A出发,沿线段AB向点B运动.同时动点 Q从点C出发,沿线段CD向点D运动.点P、Q的运动速度均为每秒1个单位,运动时间为t秒.过点P作PE⊥AB交AC于点E.
(1)求直线AC的解析式;
(2)当t为何值时,△CQE的面积最大?最大值为多少?
(3)在动点P、Q运动的过程中,当t为何值时,在矩形ABCD内(包括边界)存在点H,使得以C、Q、E、H为顶点的四边形是菱形?

查看答案和解析>>

同步练习册答案