ÈçͼÒÑÖªA1£¬A2£¬A3£¬¡­AnÊÇxÖáÉϵĵ㣬ÇÒOA1=A1A2=A2A3=A3A4=¡­=An-1An=1£¬·Ö±ð¹ýµãA1£¬A2£¬A3£¬¡­An¡ä×÷xÖáµÄ´¹Ïß½»¶þ´Îº¯Êýy=Êýѧ¹«Ê½x2£¨x£¾0£©µÄͼÏóÓÚµãP1£¬P2£¬P3£¬¡­Pn£¬Èô¼Ç¡÷OA1P1µÄÃæ»ýΪS1£¬¹ýµãP1×÷P1B1¡ÍA2P2ÓÚµãB1£¬¼Ç¡÷P1B1P2µÄÃæ»ýΪS2£¬¹ýµãP2×÷P2B2¡ÍA3P3ÓÚµãB2£¬¼Ç¡÷P2B2P3µÄÃæ»ýΪS3£¬¡­ÒÀ´Î½øÐÐÏÂÈ¥£¬×îºó¼Ç¡÷Pn-1Bn-1Pn£¨n£¾1£©µÄÃæ»ýΪSn£¬ÔòSn=


  1. A.
    Êýѧ¹«Ê½
  2. B.
    Êýѧ¹«Ê½
  3. C.
    Êýѧ¹«Ê½
  4. D.
    Êýѧ¹«Ê½
A
·ÖÎö£º°Ñx=nºÍx=n-1´úÈë¶þ´Îº¯ÊýÇó³öyµÄÖµ£¬¼´¿ÉÇó³öÈý½ÇÐεı߳¤£¬¸ù¾ÝÃæ»ý¹«Ê½¼ÆËã¼´¿É£®
½â´ð£º¶þ´Îº¯Êýy=x2£¬ÓÉͼÏóÖª£º
µ±x=nʱ£¬y=n2£¬
µ±x=n-1ʱ£¬y=£¨n-1£©2£¬
¡àSn=¡Á1¡Á[n2-£¨n-1£©2]£¬
=£®
¹ÊÑ¡A£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁ˶þ´Îº¯ÊýµÄµãµÄ×ø±êÌØÕ÷£¬Èý½ÇÐεÄÃæ»ýµÈ֪ʶµã£¬½â´ËÌâµÄ¹Ø¼üÊÇÇó³öÈý½ÇÐεı߳¤£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÈçͼÒÑÖªA1£¬A2£¬A3£¬¡­AnÊÇxÖáÉϵĵ㣬ÇÒOA1=A1A2=A2A3=A3A4=¡­=An-1An=1£¬·Ö±ð¹ýµãA1£¬A2£¬A3£¬¡­An¡ä×÷xÖáµÄ´¹Ïß½»¶þ´Îº¯Êýy=
1
2
x2£¨x£¾0£©µÄͼÏóÓÚµãP1£¬P2£¬P3£¬¡­Pn£¬Èô¼Ç¡÷OA1P1µÄÃæ»ýΪS1£¬¹ýµãP1×÷P1B1¡ÍA2P2ÓÚµãB1£¬¼Ç¡÷P1B1P2µÄÃæ»ýΪS2£¬¹ýµãP2×÷P2B2¡ÍA3P3ÓÚµãB2£¬¼Ç¡÷P2B2P3µÄÃæ»ýΪS3£¬¡­ÒÀ´Î½øÐÐÏÂÈ¥£¬×îºó¼Ç¡÷Pn-1Bn-1Pn£¨n£¾1£©µÄÃæ»ýΪSn£¬ÔòSn=£¨¡¡¡¡£©
A¡¢
2n-1
4
B¡¢
n2
4
C¡¢
(n-1)2
4
D¡¢
2n+1
4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º2011Ä긣½¨Ê¡ÁúÑÒÊÐÁ¬³ÇÒ»ÖÐ×ÔÖ÷ÕÐÉú¿¼ÊÔÊýѧÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£ºÑ¡ÔñÌâ

ÈçͼÒÑÖªA1£¬A2£¬A3£¬¡­AnÊÇxÖáÉϵĵ㣬ÇÒOA1=A1A2=A2A3=A3A4=¡­=An-1An=1£¬·Ö±ð¹ýµãA1£¬A2£¬A3£¬¡­An¡ä×÷xÖáµÄ´¹Ïß½»¶þ´Îº¯Êýy=x2£¨x£¾0£©µÄͼÏóÓÚµãP1£¬P2£¬P3£¬¡­Pn£¬Èô¼Ç¡÷OA1P1µÄÃæ»ýΪS1£¬¹ýµãP1×÷P1B1¡ÍA2P2ÓÚµãB1£¬¼Ç¡÷P1B1P2µÄÃæ»ýΪS2£¬¹ýµãP2×÷P2B2¡ÍA3P3ÓÚµãB2£¬¼Ç¡÷P2B2P3µÄÃæ»ýΪS3£¬¡­ÒÀ´Î½øÐÐÏÂÈ¥£¬×îºó¼Ç¡÷Pn-1Bn-1Pn£¨n£¾1£©µÄÃæ»ýΪSn£¬ÔòSn=£¨ £©

A£®
B£®
C£®
D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º2012Ä긣½¨Ê¡ÆÎÌïÊÐÄÏÃÅѧУÖп¼ÊýѧģÄâÊÔ¾í£¨4Ô·ݣ©£¨½âÎö°æ£© ÌâÐÍ£ºÑ¡ÔñÌâ

ÈçͼÒÑÖªA1£¬A2£¬A3£¬¡­AnÊÇxÖáÉϵĵ㣬ÇÒOA1=A1A2=A2A3=A3A4=¡­=An-1An=1£¬·Ö±ð¹ýµãA1£¬A2£¬A3£¬¡­An¡ä×÷xÖáµÄ´¹Ïß½»¶þ´Îº¯Êýy=x2£¨x£¾0£©µÄͼÏóÓÚµãP1£¬P2£¬P3£¬¡­Pn£¬Èô¼Ç¡÷OA1P1µÄÃæ»ýΪS1£¬¹ýµãP1×÷P1B1¡ÍA2P2ÓÚµãB1£¬¼Ç¡÷P1B1P2µÄÃæ»ýΪS2£¬¹ýµãP2×÷P2B2¡ÍA3P3ÓÚµãB2£¬¼Ç¡÷P2B2P3µÄÃæ»ýΪS3£¬¡­ÒÀ´Î½øÐÐÏÂÈ¥£¬×îºó¼Ç¡÷Pn-1Bn-1Pn£¨n£¾1£©µÄÃæ»ýΪSn£¬ÔòSn=£¨ £©

A£®
B£®
C£®
D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º2012ÄêÕã½­Ê¡º¼ÖÝÊÐÖп¼ÊýѧģÄâÊÔ¾í£¨26£©£¨½âÎö°æ£© ÌâÐÍ£ºÑ¡ÔñÌâ

ÈçͼÒÑÖªA1£¬A2£¬A3£¬¡­AnÊÇxÖáÉϵĵ㣬ÇÒOA1=A1A2=A2A3=A3A4=¡­=An-1An=1£¬·Ö±ð¹ýµãA1£¬A2£¬A3£¬¡­An¡ä×÷xÖáµÄ´¹Ïß½»¶þ´Îº¯Êýy=x2£¨x£¾0£©µÄͼÏóÓÚµãP1£¬P2£¬P3£¬¡­Pn£¬Èô¼Ç¡÷OA1P1µÄÃæ»ýΪS1£¬¹ýµãP1×÷P1B1¡ÍA2P2ÓÚµãB1£¬¼Ç¡÷P1B1P2µÄÃæ»ýΪS2£¬¹ýµãP2×÷P2B2¡ÍA3P3ÓÚµãB2£¬¼Ç¡÷P2B2P3µÄÃæ»ýΪS3£¬¡­ÒÀ´Î½øÐÐÏÂÈ¥£¬×îºó¼Ç¡÷Pn-1Bn-1Pn£¨n£¾1£©µÄÃæ»ýΪSn£¬ÔòSn=£¨ £©

A£®
B£®
C£®
D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º2011ÄêÕã½­Ê¡º¼ÖÝÊÐÖп¼ÊýѧģÄâÊÔ¾í£¨42£©£¨½âÎö°æ£© ÌâÐÍ£ºÑ¡ÔñÌâ

ÈçͼÒÑÖªA1£¬A2£¬A3£¬¡­AnÊÇxÖáÉϵĵ㣬ÇÒOA1=A1A2=A2A3=A3A4=¡­=An-1An=1£¬·Ö±ð¹ýµãA1£¬A2£¬A3£¬¡­An¡ä×÷xÖáµÄ´¹Ïß½»¶þ´Îº¯Êýy=x2£¨x£¾0£©µÄͼÏóÓÚµãP1£¬P2£¬P3£¬¡­Pn£¬Èô¼Ç¡÷OA1P1µÄÃæ»ýΪS1£¬¹ýµãP1×÷P1B1¡ÍA2P2ÓÚµãB1£¬¼Ç¡÷P1B1P2µÄÃæ»ýΪS2£¬¹ýµãP2×÷P2B2¡ÍA3P3ÓÚµãB2£¬¼Ç¡÷P2B2P3µÄÃæ»ýΪS3£¬¡­ÒÀ´Î½øÐÐÏÂÈ¥£¬×îºó¼Ç¡÷Pn-1Bn-1Pn£¨n£¾1£©µÄÃæ»ýΪSn£¬ÔòSn=£¨ £©

A£®
B£®
C£®
D£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸