精英家教网 > 初中数学 > 题目详情

作业宝矩形ABCD中,点E在边AB上,将矩形ABCD沿直线DE折叠,点A恰好落在边BC上的点F处,若AD=10,CD=6,则BE=________.


分析:首先根据△DEF由△DEA翻折而成,结合翻折变换的知识得到BF的长,然后设BE=x,则AE=BF=6-x,利用勾股定理求出x的值即可.
解答:∵△DEF由△DEA翻折而成,
∴AD=DF=10,
在Rt△DCF中,
∵CD=6,DF=10,
∴CF===8,
∴BF=BC-CF=10-8=2,
在Rt△EBF中,设BE=x,则AE=BF=6-x,
∴x2+22=(6-x)2
解得x=
故答案为
点评:本题考查的是图形的翻折变换,即折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在矩形ABCD中,点E在AD上,EC平分∠BED.
(1)试判断△BEC是否为等腰三角形,请说明理由?
(2)若AB=1,∠ABE=45°,求BC的长.
(3)在原图中画△FCE,使它与△BEC关于CE的中点O成中心对称,此时四边形BCFE是什么特殊平行四边形,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在矩形ABCD中,点E对角线是BD上一点,作∠CEF=∠CBD,过点C作CF⊥CE交EF于F,连接DF.求证:
(1)
CE
CB
=
CF
CD

(2)BD⊥DF.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在矩形ABCD中,点E在AD上,CE平分∠BED.
(1)△BEC是否为等腰三角形?为什么?
(2)若AB=1,∠DCE=22.5°,求BC长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•泉港区质检)如图,在矩形ABCD中,点E是BC边上的一动点,DF⊥AE于F,连接DE.
(1)求证:△ABE∽△DFA;
(2)如果AE=BC=10,AB=6,试求出tan∠EDF的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,点E为CD上一点,将△BCE沿BE翻折后点C恰好落在AD边上的点F处,过F作FH⊥BC于H,交BE于G,连接CG.
(1)求证:四边形CEFG是菱形;
(2)若AB=8,BC=10,求四边形CEFG的面积.

查看答案和解析>>

同步练习册答案