精英家教网 > 初中数学 > 题目详情

AD是△ABC的中线,DE是△ADC的中线,已知△ABC的面积为10,则△ADE的面积为________.

2.5
分析:先根据AD是△ABC的中线可知S△ADC=S△ABC,再由DE是△ADC的中线可知S△ADE=S△ADC,故可得出结论.
解答:∵AD是△ABC的中线,△ABC的面积为10,
∴S△ADC=S△ABC=×10=5,
∵DE是△ADC的中线,
∴S△ADE=S△ADC=×5=2.5.
故答案为:2.5.
点评:本题考查的是三角形的面积,熟知三角形的中线将三角形的面积分为相等的两部分是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,AD是△ABC的中线,BE是△ABD的中线
(1)作出△BDE的BD边上的高;
(2)若△ABC的面积为40,BD=5,求△BDE的BD边上的高.

查看答案和解析>>

科目:初中数学 来源: 题型:

25、探究:
(1)AD是△ABC的中线,那么△ABD与△ACD的面积有什么关系,为什么?
(2)你能用三种不同的方法把一个三角形的面积四等分吗?请画出图形.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AD是△ABC的中线.
(1)画出以点D为对称中心与△ABD成中心对称的三角形.
(2)画出以点B为对称中心与(1)所作三角形成中心对称的三角形.
(3)问题(2)所作三角形可以看作由△ABD作怎样的变换得到的?

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,AB=AC.
(1)如图1,如果∠BAD=40°,AD是△ABC的中线,AD=AE,则∠EDC=
20°
20°

(2)如图2,如果(1)∠BAD=70°,AD是△ABC的中线,AD=AE,则∠EDC=
35°
35°

(3)思考,通过以上两题,你发现∠BAD与∠EDC数量之间有什么关系?请用式子表示
∠BAD=2∠EDC
∠BAD=2∠EDC

(4)如图3,如果AD不是△ABC的中线,AD=AE,是否仍有上述关系?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AD是△ABC的中线,E是AD的中点,F是AB的中点,△ABC的面积为64cm2,则△EFB的面积是
8
8
cm2

查看答案和解析>>

同步练习册答案