精英家教网 > 初中数学 > 题目详情

(1)问题背景
如图1,Rt△ABC中,∠BAC=90°,AB=AC,∠ABC的平分线交直线AC于D,过点C作CE⊥BD,交直线BD于E.请探究线段BD与CE的数量关系.(事实上,我们可以延长CE与直线BA相交,通过三角形的全等等知识解决问题.)
结论:线段BD与CE的数量关系是______(请直接写出结论);
(2)类比探索
在(1)中,如果把BD改为∠ABC的外角∠ABF的平分线,其他条件均不变(如图2),(1)中的结论还成立吗?若成立,请写出证明过程;若不成立,请说明理由;
(3)拓展延伸
在(2)中,如果AB≠AC,且AB=nAC(0<n<1),其他条件均不变(如图3),请你直接写出BD与CE的数量关系.
结论:BD=______CE(用含n的代数式表示).

解:(1)BD=2CE.理由如下:
如图1,延长CE、BA交于F点.
∵CE⊥BD,交直线BD于E,
∴∠FEB=∠CEB=90°.
∵BD平分∠ABC,
∴∠1=∠2,
∴∠F=∠BCF,
∴BF=BC,
∵BE⊥CF,
∴CF=2CE.
∵△ABC中,AC=AB,∠A=90°,
∴∠CBA=45°,
∴∠F=(180-45)°÷2=67.5°,∠FBE=22.5°,
∴∠ADB=67.5°,
∵在△ADB和△AFC中,

∴△ADB≌△AFC(AAS),
∴BD=CF,
∴BD=2CE;

(2)结论BD=2CE仍然成立.理由如下:
如图2,延长CE、AB交于点G.
∵∠1=∠2,∠1=∠3,∠2=∠4,
∴∠3=∠4,
又∵BE=BE,∠GEB=∠CEB=90°,
∴△GBE≌△CBE(ASA),
∴GE=CE,
∴CG=2CE.
∵∠D+∠DCG=∠G+∠DCG=90°,
∴∠D=∠G,
又∵∠DAB=∠GAC=90°,
∴△DAB∽△GAC,
=
∵AB=AC,
∴BD=CG=2CE;

(3)BD=2nCE.理由如下:
如图3,延长CE、AB交于点G.
∵∠1=∠2,∠1=∠3,∠2=∠4,
∴∠3=∠4,
又∵BE=BE,∠GEB=∠CEB=90°,
∴△GBE≌△CBE(ASA),
∴GE=CE,
∴CG=2CE.
∵∠D+∠DCG=∠G+∠DCG=90°,
∴∠D=∠G,
又∵∠DAB=∠GAC=90°,
∴△DAB∽△GAC,
=
∵AB=nAC,
∴BD=nCG=2nCE.
故答案为BD=2CE;2n.
分析:(1)延长CE、BA交于F点,先证明△BFC是等腰三角形,再根据等腰三角形的性质可得CF=2CE,然后证明△ADB≌△AFC可得BD=FC,进而证出BD=2CE;
(2)延长CE、AB交于点G,先利用ASA证明△GBE≌△CBE,得出GE=CE,则CG=2CE,再证明△DAB∽△GAC,根据相似三角形对应边的比相等及AB=AC即可得出BD=CG=2CE;
(3)同(2),延长CE、AB交于点G,先利用ASA证明△GBE≌△CBE,得出GE=CE,则CG=2CE,再证明△DAB∽△GAC,根据相似三角形对应边的比相等及AB=nAC即可得出BD=CG=2nCE.
点评:本题考查了等腰三角形的性质和判定,全等三角形的性质和判定,相似三角形的性质和判定等知识点的应用,此题关键是正确找出辅助线,通过辅助线构造全等三角形或相似三角形解决问题,要掌握辅助线的作图根据.题目比较好,综合性也比较强.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•郑州模拟)(1)问题背景
如图1,Rt△ABC中,∠BAC=90°,AB=AC,∠ABC的平分线交直线AC于D,过点C作CE⊥BD,交直线BD于E.请探究线段BD与CE的数量关系.(事实上,我们可以延长CE与直线BA相交,通过三角形的全等等知识解决问题.)
结论:线段BD与CE的数量关系是
BD=2CE
BD=2CE
(请直接写出结论);
(2)类比探索
在(1)中,如果把BD改为∠ABC的外角∠ABF的平分线,其他条件均不变(如图2),(1)中的结论还成立吗?若成立,请写出证明过程;若不成立,请说明理由;
(3)拓展延伸
在(2)中,如果AB≠AC,且AB=nAC(0<n<1),其他条件均不变(如图3),请你直接写出BD与CE的数量关系.
结论:BD=
2n
2n
CE(用含n的代数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

问题背景:

如图1,矩形铁片ABCD的长为2a,宽为a; 为了要让铁片能穿过直径为的圆孔,需对铁片进行处理(规定铁片与圆孔有接触时铁片不能穿过圆孔);

探究发现:

1.如图2,M、N、P、Q分别是AD、AB、BC、CD的中点,若将矩形铁片的四个角去掉,只余下四边形MNPQ,则此时铁片的形状是 _______,给出证明,并通过计算说明此时铁片都能穿过圆孔;

拓展迁移:

2.如图3,过矩形铁片ABCD的中心作一条直线分别交边BC、AD于点E、F(不与端点重合),沿着这条直线将矩形  铁片切割成两个全等的直角梯形铁片;

 

①当BE=DF=时,判断直角梯形铁片EBAF能否穿过圆孔,并说明理由;

②为了能使直角梯形铁片EBAF顺利穿过圆孔,请直接写出线段BE的长度的取值范围 .

 

查看答案和解析>>

科目:初中数学 来源: 题型:

问题背景:
如图1,矩形铁片ABCD的长为2a,宽为a; 为了要让铁片能穿过直径为的圆孔,需对铁片进行处理(规定铁片与圆孔有接触时铁片不能穿过圆孔);

探究发现:
【小题1】如图2,M、N、P、Q分别是AD、AB、BC、CD的中点,若将矩形铁片的四个角去掉,只余下四边形MNPQ,则此时铁片的形状是 _______,给出证明,并通过计算说明此时铁片都能穿过圆孔;

拓展迁移:
【小题2】如图3,过矩形铁片ABCD的中心作一条直线分别交边BC、AD于点E、F(不与端点重合),沿着这条直线将矩形 铁片切割成两个全等的直角梯形铁片;
 
①当BE=DF=时,判断直角梯形铁片EBAF能否穿过圆孔,并说明理由;
②为了能使直角梯形铁片EBAF顺利穿过圆孔,请直接写出线段BE的长度的取值范围 .

查看答案和解析>>

科目:初中数学 来源:2012届江苏省江阴市石庄中学九年级中考模拟考试数学试卷(带解析) 题型:解答题

问题背景:
如图1,矩形铁片ABCD的长为2a,宽为a; 为了要让铁片能穿过直径为的圆孔,需对铁片进行处理(规定铁片与圆孔有接触时铁片不能穿过圆孔);

探究发现:
【小题1】如图2,M、N、P、Q分别是AD、AB、BC、CD的中点,若将矩形铁片的四个角去掉,只余下四边形MNPQ,则此时铁片的形状是 _______,给出证明,并通过计算说明此时铁片都能穿过圆孔;

拓展迁移:
【小题2】如图3,过矩形铁片ABCD的中心作一条直线分别交边BC、AD于点E、F(不与端点重合),沿着这条直线将矩形 铁片切割成两个全等的直角梯形铁片;
 
①当BE=DF=时,判断直角梯形铁片EBAF能否穿过圆孔,并说明理由;
②为了能使直角梯形铁片EBAF顺利穿过圆孔,请直接写出线段BE的长度的取值范围 .

查看答案和解析>>

科目:初中数学 来源:2013年初中毕业升学考试(山东日照卷)数学(解析版) 题型:解答题

 

问题背景:

如图(a),点A、B在直线l的同侧,要在直线l上找一点C,使AC与BC的距离之和最小,我们可以作出点B关于l的对称点B′,连接A B′与直线l交于点C,则点C即为所求.

(1)实践运用:

如图(b),已知,⊙O的直径CD为4,点A 在⊙O 上,∠ACD=30°,B 为弧AD 的中点,P为直径CD上一动点,则BP+AP的最小值为       

(2)知识拓展:

如图(c),在Rt△ABC中,AB=10,∠BAC=45°,∠BAC的平分线交BC于点D,E、F分别是线段AD和AB上的动点,求BE+EF的最小值,并写出解答过程.

 

查看答案和解析>>

同步练习册答案