精英家教网 > 初中数学 > 题目详情
精英家教网如图,Rt△ABC的直角边BC在x轴正半轴上,斜边AC上的中线BD反向延长线交y轴负半轴于E,双曲线y=
kx
(x>0)
的图象经过点A,若S△BEC=8,则k=
 
分析:方法1:因为S△BEC=8,根据k的几何意义求出k值即可;
方法2:先证明△ABC与△OBE 相似,再根据相似三角形的对应边成比例列式整理即可得到k=2S△BEC=16.
解答:精英家教网解:方法1:设OB=x,则AB=
k
x

过D作DH⊥x轴于H,
∵D为AC中点,
∴DH为△ABC中位线,
∴DH=
1
2
AB=
k
2x

∵∠EBO=∠DBC=∠DCB,
∴△ABC∽△EOB,
设BH为y,
则EO=
k
2y
,BC=2y,
∴S△EBC=
1
2
BC•OE=
1
2
k
2y
•2y=
k
2
=8,
∴k=16.
方法2:∵BD是Rt△ABC斜边上的中线,
∴BD=CD=AD,
∴∠DBC=∠ACB,
又∠DBC=∠OBE,∠BOE=∠ABC=90°,
∴△ABC∽△EOB,
AB
OE
=
BC
OB

∴AB•OB=BC•OE,
∵S△BEC=
1
2
×BC•OE=8,
∴AB•OB=16,
∴k=xy=AB•OB=16.
故答案为:16.
点评:主要考查了用待定系数法求反比例函数的解析式和反比例函数系数k的几何意义.反比例函数系数k的几何意义为:反比例函数图象上的点的横纵坐标之积是定值k,同时|k|也是该点到两坐标轴的垂线段与两坐标轴围成的矩形面积.本题综合性强,考查知识面广,能较全面考查学生综合应用知识的能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,Rt△ABC的直角边BC在x轴正半轴上,斜边AC边上的中线BD反向延长线交y轴负半轴于E,双曲线y=
k
x
(x>0)
的图象经过点A,若△BEC的面积为4,则k等于(  )
A、16B、8C、4D、2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,Rt△ABC的两直角边分别为1,2,以Rt△ABC的斜边AC为一直角边,另一直角边为1画第二个△ACD;在以△ACD的斜边AD为一直角边,另一直角边长为1画第三个△ADE;…,依此类推,第n个直角三角形的斜边长是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,Rt△ABC的斜边AB=10cm,cosA=
35
,则BC=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•广安)如图,Rt△ABC的边BC位于直线l上,AC=
3
,∠ACB=90°,∠A=30°.若Rt△ABC由现在的位置向右无滑动地旋转,当点A第3次落在直线l上时,点A所经过的路线的长为
(4+
3
)π
(4+
3
)π
(结果用含有π的式子表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC的一条直角边AB是⊙O的直径,AB=8,斜边交⊙O于D,∠A=30°,求阴影部分的面积.

查看答案和解析>>

同步练习册答案