精英家教网 > 初中数学 > 题目详情

如图,BD为⊙O的直径,A为数学公式的中点,A交BC于点E,过D作⊙O的切线,交BC的延长线于F,
(1)求证:DF=EF;
(2)AE=2,DE=4,求DB长.

解:(1)连接OA,
∵A为的中点,
∴OA⊥BC,
∴∠OAE+∠AEG=90°,
∵∠AEG=∠FED,
∴∠OAE+∠FED=90°,
∵DE为圆的切线,
∴DE⊥BD,即∠FDE+∠ADB=90°,
∵OA=OD,
∴∠OAE=∠ADB,
∴∠FED=∠FDE,
∴DF=EF;

(2)连接AB,
∵BD为圆的直径,
∴∠BAD=90°,
∴∠ABE+∠AEB=90°,
∵OA⊥BC,
∴∠OAD+∠AEB=90°,
∴∠ABE=∠OAD=∠ADO,
∵∠BAE=∠DAB,
∴△ABE∽△ADB,
=,即AB2=AE•AD=2×(2+4)=12,
在Rt△ABD中,根据勾股定理得:BD2=AB2+AD2=12+36=48,
则BD=4
分析:(1)连接OA,由A为弧BC的中点,利用垂径定理的逆定理得到OA垂直于BC,得到一对角互余,再由对顶角相等等量代换得到两个角相等,由DE为圆的切线,利用切线的性质得到一对角互余,根据OA=OD,利用等边对等角得到一对角相等,等量代换得到∠FED=∠FDE,等角对等边即可得证;
(2)连接AB,利用同角的余角相等得到∠ABE=∠ADB,再由一对公共角,得到三角形ABE与三角形ADB相似,由相似得比例,求出AB的长,再利用勾股定理即可求出DB的长.
点评:此题考查了切线的性质,等腰三角形的判定与性质,相似三角形的判定与性质,勾股定理,熟练掌握切线的性质是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

10、如图,一电线杆AB的影子分别落在了地上和墙上,某一时刻,小明竖起1米高的直杆,量得其影长为0.5米,此时,他又量得电线杆AB落在地上的影子BD长3米,落在墙上的影子CD的高为2米.小明用这些数据很快算出了电线杆AB的高.请你计算,电线杆AB的高为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,一电线杆AB的影子分别落在了地上和墙上.同一时刻,小明竖起1米高的直杆MN,量得其影长MF为0.5米,量得电线杆AB落在地上的影子BD长3米,落在墙上的影子CD的高为2米.你能利用小明测量的数据算出电线杆AB的高吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,等边△ABC的边AB与正方形DEFG的边长均为2,且AB与DE在同一条直线上,开始时点B与点D重合,让△ABC沿这条直线向右平移,直到点B与点E重合为止,设BD的长为x,△ABC与正方形DEFG重叠部分(图中阴影部分)的面积为y,则y与x之间的函数关系的图象大致是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•海陵区模拟)如图是泰州凤城河边的“望海楼”,小明学习测量物体高度后,利用星期天测量了望海楼AB的高度,小明首先在一空地上用高度为1.5米的测角仪CD竖直放置地面,测得点A的仰角为30°,沿着DB方向前进DE=24米,然后登上EF=2米高的平台,又前进FG=2米到点G,再用1.5米高的测角仪测得点A的仰角为45°,图中所有点均在同一平面,FG∥DB,CD∥FE∥AB∥GH.
(1)求点H到地面BD的距离;
(2)试求望海楼AB的高度约为多少米?(
3
≈1.73
,结果精确到0.1米)

查看答案和解析>>

科目:初中数学 来源:2011届江苏省九年级下册《投影与视图》单元测试数学卷 题型:选择题

如图,一电线杆AB的影子分别落在地上和墙上,某一时刻,小明竖起1m高的直杆,量

得其影长为0.5m,此时,他又量得电线杆AB落在地上的影子BD长3m,落在墙上的影子

CD的高为2m,小明用这些数据很快算出了电线杆AB的高,请你计算,电线杆AB的高为

(  )

A.5m      B.6m      C.7m        D.8m

 

查看答案和解析>>

同步练习册答案