精英家教网 > 初中数学 > 题目详情

如图,?ABCD的边AD、BC上有两点E、F,且AE=CF.
求证:BE∥DF.

证明:
∵四边形ABCD为平行四边形,
∴AD∥BC,AD=BC.
又∵AE=CF,
∴ED=BF.
∴四边形EBFD是平行四边形.
∴BE∥DF.
分析:在图中,只要证明四边形EBFD为平行四边形即可回答问题,而平行四边形的证明方法有多种,关键看题中给的什么条件更多些,本题可依据一组对边平行且相等来证明.
点评:此题主要考查了平行四边形的判定及性质,难易程度适中.熟练掌握性质定理和判定定理是解题的关键.平行四边形的五种判定方法与平行四边形的性质相呼应,每种方法都对应着一种性质,在应用时应注意它们的区别与联系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图正方形ABCD的边长为2cm,O是AB的中点,也是抛物线的顶点,OP⊥AB,两半圆的直径分别为OA与OB.抛物线经过C、D两点,且关于OP对称,则图中阴影部分的面积之和为
 
cm2.(π取3.14,结果保留2个有效数字)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图正方形ABCD的边长为2,AE=EB,线段MN的两端点分别在CB、CD上滑动,且MN=1,当CM为何值时△AED与以M、N、C为顶点的三角形相似?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•泰宁县质检)如图菱形ABCD的边长为2,对角线BD=2,E、F分别是AD、CD上的两个动点,且满足AE+CF=2.
(1)求证:△BDE≌△BCF;
(2)判断△BEF的形状,并说明理由.同时指出△BCF是由△BDE经过如何变换得到?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•鄂州)如图正方形ABCD的边长为4,E、F分别为DC、BC中点.
(1)求证:△ADE≌△ABF.
(2)求△AEF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图正方形ABCD的边长是a,△AEF是等边三角形,点E在BC上,点F在CD上
(1)求证:△ABE≌△ADF;
(2)求等边△AEF的边长.

查看答案和解析>>

同步练习册答案