精英家教网 > 初中数学 > 题目详情

【题目】如图,AB是⊙O的直径,点F,C是⊙O上两点,且 = = ,连接AC,AF,过点C作CD⊥AF交AF延长线于点D,垂足为D.

(1)求证:CD是⊙O的切线;
(2)若CD=2 ,求⊙O的半径.

【答案】
(1)证明:连结OC,如图,

=

∴∠FAC=∠BAC,

∵OA=OC,

∴∠OAC=∠OCA,

∴∠FAC=∠OCA,

∴OC∥AF,

∵CD⊥AF,

∴OC⊥CD,

∴CD是⊙O的切线;


(2)解:连结BC,如图,

∵AB为直径,

∴∠ACB=90°,

= =

∴∠BOC= ×180°=60°,

∴∠BAC=30°,

∴∠DAC=30°,

在Rt△ADC中,CD=2

∴AC=2CD=4

在Rt△ACB中,BC= AC= ×4 =4,

∴AB=2BC=8,

∴⊙O的半径为4.


【解析】(1)连结OC,由 = ,根据圆周角定理得∠FAC=∠BAC,而∠OAC=∠OCA,则∠FAC=∠OCA,可判断OC∥AF,由于CD⊥AF,所以OC⊥CD,然后根据切线的判定定理得到CD是⊙O的切线;(2)连结BC,由AB为直径得∠ACB=90°,由 = = 得∠BOC=60°,则∠BAC=30°,所以∠DAC=30°,在Rt△ADC中,利用含30度的直角三角形三边的关系得AC=2CD=4 ,在Rt△ACB中,利用含30度的直角三角形三边的关系得BC= AC=4,AB=2BC=8,所以⊙O的半径为4.
【考点精析】解答此题的关键在于理解三角形三边关系的相关知识,掌握三角形两边之和大于第三边;三角形两边之差小于第三边;不符合定理的三条线段,不能组成三角形的三边,以及对切线的判定定理的理解,了解切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】台风是一种自然灾害,它以台风中心为圆心在周围上千米的范围内形成极端气候,有极强的破坏力。如图,有一台风中心沿东西方向AB由点A行驶向点B,已知点 C为一海港,且点 C与直线 AB上两点A,B的距离分别为300km和400km,又 AB=500km,以台风中心为圆心周围250km以内为受影响区域。

(1)海港C受台风影响吗?为什么?

(2)若台风的速度为20km/h,台风影响该海港持续的时间有多长?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为了解学生体质情况,从各年级随机抽取部分学生进行体能测试,每个学生的测试成绩按标准对应为优秀、良好、及格、不及格四个等级.统计员在将测试数据绘制成图表时发现,优秀漏统计人,良好漏统计人,于是及时更正,从而形成如下图表.请按正确数据解答下列各题:

(1)填写统计表.

(2)根据调整后数据,补全条形统计图.

(3)若该校共有学生人,请你估算出该校体能测试等级为优秀的人数.

学生体能测试成绩各等次人数统计表

体能等级

调整前人数

调整后人数

优秀



良好



及格



不及格



合计



学生体能测试成绩各等次人数统计图

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为(

A. a2
B. a2
C. a2
D. a2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有公路l1同侧、l2异侧的两个城镇AB,如下图.电信部门要修建一座信号发射塔,按照设计要求,发射塔到两个城镇AB的距离必须相等,到两条公路l1l2的距离也必须相等,发射塔C应修建在什么位置?请用尺规作图找出所有符合条件的点,注明点C的位置.(保留作图痕迹,不要求写出画法)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给下以下结论:
①2a﹣b=0;
②abc>0;
③4ac﹣b2<0;
④9a+3b+c<0;
⑤关于x的一元二次方程ax2+bx+c+3=0有两个相等实数根;
⑥8a+c<0.
其中正确的个数是( )

A.2
B.3
C.4
D.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面材料并解决有关问题:

我们知道:|x|=.现在我们可以用这一结论来化简含有绝对值的代数式,现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式|x+1|+|x2|时,可令x+1=0x2=0,分别求得x=1x=2(称﹣12分别为|x+1||x2|的零点值).在实数范围内,零点值x=1和,x=2可将全体实数分成不重复且不遗漏的如下3种情况:

①x﹣1②﹣1≤x2③x≥2

从而化简代数式|x+1|+|x﹣2|可分以下3种情况:

x﹣1时,原式=﹣x+1x﹣2=﹣2x+1

当﹣1≤x2时,原式=x+1﹣x﹣2=3

x≥2时,原式=x+1+x2=2x1.综上讨论,原式=

通过以上阅读,请你解决以下问题:

1)化简代数式|x+2|+|x﹣4|

2)求|x﹣1|﹣4|x+1|的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:平面直角坐标系中,四边形OABC的顶点分别为O(0,0)、A(5,0)、B(m,2)、C(m﹣5,2).
(1)问:是否存在这样的m,使得在边BC上总存在点P,使∠OPA=90°?若存在,求出m的取值范围;若不存在,请说明理由.
(2)当∠AOC与∠OAB的平分线的交点Q在边BC上时,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】大润发超市进了一批成本为8元/个的文具盒.调查发现:这种文具盒每个星期的销售量y(个)与它的定价x(元/个)的关系如图所示:

(1)求这种文具盒每个星期的销售量y(个)与它的定价x(元/个)之间的函数关系式(不必写出自变量x的取值范围);
(2)每个文具盒的定价是多少元时,超市每星期销售这种文具盒(不考虑其他因素)可获得的利润为1200元?
(3)若该超市每星期销售这种文具盒的销售量不少于115个,且单件利润不低于4元(x为整数),当每个文具盒定价多少元时,超市每星期利润最高?最高利润是多少?

查看答案和解析>>

同步练习册答案