精英家教网 > 初中数学 > 题目详情

(1)数学公式
(2)配方法解方程2x2-4x+1=0.

解:(1))=-+=2-4+4=4-2;
(2)2x2-4x+1=0,
2x2-4x=-1,
x2-2x=-
x2-2x+1=-+1,
(x-1)2=
x-1=±
x1=1,x2=1-
分析:(1)先用与括号中的每一项分别进行相乘,再进行化简,把所得的结果合并即可;
(2)根据配方法的步骤,先移项,然后把二次项系数化为1,再配方,最后解方程即可.
点评:此题考查了二次根式的混合运算和用配方法解一元二次方程,解题的关键是掌握运算的顺序和法则,配方法的步骤,注意结果的符号.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

28、解方程:x2-6x+5=0 (配方法)

查看答案和解析>>

科目:初中数学 来源: 题型:

(用配方法)4x2+5=12x.

查看答案和解析>>

科目:初中数学 来源: 题型:

解方程:
(1)(2x-1)2=4;
(2)12x2+7x+1=0
(3)(2x-3)2-4(2x-3)+3=0;
(4)2x2-5x+2=0(限用配方法)

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=-x2-4x-3
(1)用配方法将y=-x2-4x-3化成y=a(x-h)2+k的形式;
(2)在平面直角坐标系中,画出这个二次函数的图象;
(3)写出当x为何值时,y>0;
(4)当x为何值时,y随x的增大而减小;
(5)当-3<x<0时,求y的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

解下列方程:
(1)3x2=12x
(2)2x2-4x+1=0(配方法)

查看答案和解析>>

同步练习册答案