精英家教网 > 初中数学 > 题目详情
二次函数y=-3(x-1)2+2图象的顶点坐标是______.
∵抛物线解析式为y=-3(x-1)2+2,
∴二次函数图象的顶点坐标是(1,2).
故答案为(1,2).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,抛物线y=mx2-2mx-2(m≠0)与y轴交于点A,其对称轴与x轴交于点B.
(1)求点A,B的坐标;
(2)设直线l与直线AB关于该抛物线的对称轴对称,求直线l的解析式;
(3)若该抛物线在-2<x<-1这一段位于直线l的上方,并且在2<x<3这一段位于直线AB的下方,求该抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系中, 抛物线+与直线交于A, B两点,点A在点B的左侧.
(1)如图1,当时,直接写出A,B两点的坐标;
(2)在(1)的条件下,点P为抛物线上的一个动点,且在直线AB下方,试求出△ABP面积的最大值及此时点P的坐标;
(3)如图2,抛物线+ 轴交于C,D两点(点C在点D的左侧).在直线上是否存在唯一一点Q,使得∠OQC=90°?若存在,请求出此时的值;若不存在,请说明理由.

图1                                   图2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线与x轴,y轴分别相交于点B,点C,经过B、C两点的抛物线与x轴的另一交点为A,顶点为P,且对称轴是直线
(1)求A点的坐标及该抛物线的函数表达式;
(2)求出∆PBC的面积;
(3)请问在对称轴右侧的抛物线上是否存在点Q,使得以点A、B、C、Q所围成的四边形面积是∆PBC的面积的?若存在,请求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列函数是二次函数的是(  )
A.y=
2
x
+x2
B.y=
2
5
+x2
C.y=(x-1)2-x2D.y=
1
2
x(x-1)2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

用配方法求二次函数y=4x2-24x+26的对称轴和顶点坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数y=x2的图象的开口方向是(  )
A.向上B.向下C.向左D.向右

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

对非负实数x“四舍五入”到个位的值记为<x>,
即:当n为非负整数时,如果n-
1
2
≤x<n+
1
2
则<x>=n.
如:<0>=<0.48>=0,<0.64>=<1.493>=1,<2>=2,<3.5>=<4.12>=4,…
试解决下列问题:
(1)填空:①<π>=______(π为圆周率);
②如果<2x-1>=3,则实数x的取值范围为______;
(2)①当x≥0,m为非负整数时,求证:<x+m>=m+<x>;
②举例说明<x+y>=<x>+<y>不恒成立;
(3)求满足<x>=
4
3
x
的所有非负实数x的值;
(4)设n为常数,且为正整数,函数y=x2-x+
1
4
的自变量x在n≤x<n+1范围内取值时,函数值y为整数的个数记为a,满足<
k
>=n的所有整数k的个数记为b.求证:a=b=2n.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图:抛物线y=ax2+bx+c(a≠0)的图象与x轴的一个交点是(-2,0),顶点是(1,3).下列说法中不正确的是(  )
A.抛物线的对称轴是x=1
B.抛物线的开口向下
C.抛物线与x轴的另一个交点是(2,0)
D.当x=1时,y有最大值是3

查看答案和解析>>

同步练习册答案