精英家教网 > 初中数学 > 题目详情
8.如图所示,直线l:y=3x-3与x轴交于点A,与y轴交于点B,把△AOB沿y轴翻折,点A落到点C,抛物线过点B,C和D(-3,0).
(1)求直线BD和抛物线的解析式;
(2)若点M是抛物线上一动点,是否存在这样的点M使△BDM是以BD为直角边的直角三角形,若存在,求出点M的坐标;若不存在,请说明理由;
(3)若点P(-2,$\frac{3}{4}$)是对称轴上一点,过点P的任意一条与y轴不平行的直线与抛物线交于两点N1,N2,说明$\frac{{N}_{1}P•{N}_{2}P}{{N}_{1}{N}_{2}}$是否是定值?若是定值,请求出这个定值,若不是,请说明理由.

分析 (1)首先求出A、B、C、D坐标,利用待定系数法即可解决问题.
(2)分两种情形讨论,利用方程组求交点坐标即可.
(3)是定值,定值为$\frac{1}{4}$.设过点P(-2,$\frac{3}{4}$)的直线为y=kx+b,则$\frac{3}{4}$=-2k+b,N1(x1,y1),N2(x2,y2),可得过点P的直线为y=kx+2k+$\frac{3}{4}$,由$\left\{\begin{array}{l}{y=kx+2k+\frac{3}{4}}\\{y=-{x}^{2}-4x-3}\end{array}\right.$,消去y得到x2+(k+4)x+2k+$\frac{15}{4}$=0,得到x1+x2=-k-4,x1x2=2k+$\frac{15}{4}$,由y1=kx1+2k+$\frac{3}{4}$,y2=kx2+2k+$\frac{3}{4}$,可得y1-y2=k(x1-x2),利用两点间的距离公式求出N1N2,N1P,N2P即可解决问题.

解答 解:(1)∵y=3x-3与x轴交于点A,与y轴交于点B,
∴A(1,0),B(0,-3),
设直线BD的解析式为y=kx+b,把B、D两点坐标代入,$\left\{\begin{array}{l}{-3k+b=0}\\{b=-3}\end{array}\right.$,
解得$\left\{\begin{array}{l}{k=-1}\\{b=-3}\end{array}\right.$,
∴直线BD的解析式为y=-x-3.
∵抛物线经过点D(-3,0),C(-1,0),
设抛物线的解析式为y=a(x+1)(x+3),把点B(0,-3)代入得a=-1,
∴抛物线的解析式为y=-x2-4x-3.

(2)①当∠MDB=90°时,
∵DM⊥BD,
∵直线BD的解析式为y=-x-3,
∴直线DM的解析式为y=x+3,
由$\left\{\begin{array}{l}{y=x+3}\\{y=-{x}^{2}-4x-3}\end{array}\right.$解得$\left\{\begin{array}{l}{x=-3}\\{y=0}\end{array}\right.$或$\left\{\begin{array}{l}{x=-2}\\{y=1}\end{array}\right.$,
∴点M的坐标为(-2,1).
②当∠MBD=90°时,
∵BM⊥BD,
∵直线BD的解析式为y=-x-3,
∴直线BM的解析式为y=x-3,
由$\left\{\begin{array}{l}{y=x-3}\\{y=-{x}^{2}-4x-3}\end{array}\right.$解得$\left\{\begin{array}{l}{x=0}\\{y=-3}\end{array}\right.$或$\left\{\begin{array}{l}{x=-5}\\{y=-8}\end{array}\right.$,
∴点M的坐标为(-5,-8).
综上所述,满足条件的点M坐标为(-2,1)或(-5,-8).

(3)是定值,定值为$\frac{1}{4}$.
理由:设过点P(-2,$\frac{3}{4}$)的直线为y=kx+b,则$\frac{3}{4}$=-2k+b,N1(x1,y1),N2(x2,y2),
∴b=$\frac{3}{4}$+2k,
∴过点P的直线为y=kx+2k+$\frac{3}{4}$,
由$\left\{\begin{array}{l}{y=kx+2k+\frac{3}{4}}\\{y=-{x}^{2}-4x-3}\end{array}\right.$,消去y得到x2+(k+4)x+2k+$\frac{15}{4}$=0,
∴x1+x2=-k-4,x1x2=2k+$\frac{15}{4}$,
∵∵y1=kx1+2k+$\frac{3}{4}$,y2=kx2+2k+$\frac{3}{4}$,
∴y1-y2=k(x1-x2),
∴N1N2=$\sqrt{({x}_{1}-{x}_{2})^{2}+({y}_{1}-{y}_{2})^{2}}$=$\sqrt{1+{k}^{2}}$•$\sqrt{({x}_{1}-{x}_{2})^{2}}$=$\sqrt{1+{k}^{2}}$•$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=1+k2
又∵N1P=$\sqrt{({x}_{1}+2)^{2}+({y}_{1}-\frac{3}{4})^{2}}$=$\sqrt{({x}_{1}+2)^{2}+(k{x}_{1}+2k)^{2}}$=$\sqrt{1+{k}^{2}}$•$\sqrt{({x}_{1}+2)^{2}}$,
同理可得,N2P=$\sqrt{1+{k}^{2}}$•$\sqrt{({x}_{2}+2)^{2}}$,
∴N1P•N2P=(1+k2)$\sqrt{[({x}_{1}+2)({x}_{2}+2)]^{2}}$=(1+k2)$\sqrt{(2k+\frac{15}{4}-2k-8+4)^{2}}$=$\frac{1}{4}$(1+k2),
∴$\frac{{N}_{1}P•{N}_{2}P}{{N}_{1}{N}_{2}}$=$\frac{1}{4}$.

点评 本题考查了二次函数的相关性质、一次函数的相关性质、一元二次方程根与系数的关系以及二次根式的运算等;几何方面,考查了两点间的距离公式、轴对称-最短路线问题等.本题解题技巧要求高,而且运算复杂,因此对考生的综合能力提出了很高的要求,属于中考压轴题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

18.如图,直线l1的解析表达式为y=-2x+2,且l1与x轴交于点D,直线l2经过点A(4,0),B(3,-2),直线l1,l2交于点C.
(1)求直线l2的解析表达式;
(2)求交点C的坐标;
(3)求△ADC的面积;
(4)在直线l2上存在异于点C的另一点P,使得△ADP的面积是△ADC的面积的两倍,请求出写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,已知CD是△ABC的边AB上的中线.
(1)请你作出△ACD中CD边上的高.
(2)若△ABC的面积为18m2,求△ACD的面积;
(3)若△ACD的面积为12m2,且点C到AB的距离为6m,求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.若(x2+ax+8)(x2-3x-1)的展开式中不含x3项,则a的值为(  )
A.3B.-3C.0D.-1

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.已知有理数 x、y、z满足关系式(x-4)2+$\frac{1}{4}$|x+y-z|=0,则(5x+3y-3z)2016的末位数字是6.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.若|x2-y2-4|+(3$\sqrt{5}$x-5y-10)2=0,则xy=$\sqrt{5}$或8$\sqrt{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.若y=-mxm+1是关于x的反比例函数,则该反比例函数中k的值为2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度,2013年市政府共投资2亿元人民币建设了廉租房8万平方米,预计到2015年底三年共累计投资9.5亿元人民币建设廉租房,若在这两年内投资的增长率相同.
(1)求每年市政府投资的增长率;
(2)求2015年政府共投资多少亿元建设廉租房.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.已知三角形的两边分别为6和8,第三边的长为方程x(x-8)=10x-80的一个根,试判断这个三角形的形状.

查看答案和解析>>

同步练习册答案