精英家教网 > 初中数学 > 题目详情

如图,已知边长为a的正方形ABCD.
(1)只用直尺(没有刻度)和圆规,求作该正方形绕点A逆旋转30°后的正方形AB1C1D1
(2)求两正方形不重合部分的面积.

解:(1)

(2)连接AG,
∵AD=AB1,AG=AG,
∴直角三角形AB1G≌△ADG,
∵∠BAB1=30°,
∴∠B1AD=60°,
∴∠B1AG=30°,
∵AB1=a,
∴B1G=
∴四边形AB1GD=2×a×÷2=
∴两正方形不重合部分的面积=2×(a2-)=
分析:(1)①以点A为圆心,AD长为半径作圆,再以点D为圆心,DA长为半径作弧,与圆的交点为E,连接AE,DE,△ADE就是一个等边三角形.∠EAD=60°;
②作∠EAD的角平分线,得到一个30°的角,角平分线与圆的交点为D1
③连接AC,以AC为一边根据②中30度的角作∠CAC1=30°,以点A为圆心,AC长为半径画弧与角的另一边交点为C1
④以AB为一边,作∠BAB1等于已知角30度,与圆的交点为B1
顺次连接AB1C1D1,正方形AB1C1D1就是所求的正方形.
(2)从图中可以发现两正方形不重合部分的面积,就是正方形的面积减四边形AB1GD的面积.连接AG,求它的面积.根据面积公式计算.
点评:(1)题的难点在于作一个30°的角,作出30°的角后,旋转变换根据这个角度找对应点就可以了.
(2)题的关键是根据勾股定理计算重合部分的面积,然后得出不重合部分的面积.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知边长为4的正方形ABCD中,E为AD中点,P为CE中点,F为BP中点,FH⊥BC交BC于H,连接PH,则下列结论正确的是(  )
①BE=CE;②sin∠EBP=
1
2
;③HP∥BE;④HF=1;⑤S△BFD=1.
A、①④⑤B、①②③
C、①②④D、①③④

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知边长为l的正方形OABC在直角坐标系中,A、B两点在第一象限内,OA与x轴的夹角为30°,那么点B的坐标是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知边长为5的等边三角形ABC纸片,点E在AC边上,点F在AB边上,沿着EF折叠,使点A落在BC边上的点D的位置,且ED⊥BC,则CE的长是(  )
A、10
3
-15
B、10-5
3
C、5
3
-5
D、20-10
3

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知边长为2的正三角形ABC中,P0是BC边的中点,一束光线自P0发出射到AC上的点P1后,依次反射到AB、BC上的点P2和P3(反射角等于入射角),且1<BP3
3
2
,则P1C长的取值范围是(  )
A、1<P1C<
7
6
B、
5
6
<P1C<1
C、
3
4
<P1C<
4
5
D、
7
6
<P1C<2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知边长为2的正三角形ABC沿着直线l滚动.设△ABC滚动240°时,C点的位置为C′,△ABC滚动480°时,A点的位置为A′.请你利用三角函数中正切的两角和公式:tan(α+β)=(tanα+tanβ)÷(1-tanα•tanβ),求出∠CAC′+∠CAA′的度数.(  )

查看答案和解析>>

同步练习册答案