精英家教网 > 初中数学 > 题目详情

如图,已知在△ABC中,D点在AC上,E点在BC的延长线上.
求证:∠ADB>∠CDE.

证明:∵∠DCB是△DCE的一个外角(外角定义)
∴∠DCB>∠CDE(三角形的一个外角大于任何一个和它不相邻的内角)
∵∠ADB是△BCD的一个外角(外角定义)
∴∠ADB>∠DCB(三角形的一个外角大于任何一个和它不相邻的内角)
∴∠ADB>∠CDE(不等式的性质).
分析:由于∠DCB是△DCE的一个外角,所以∠DCB>∠CDE;又因为∠ADB是△BCD的一个外角,所以∠ADB>∠DCB,故∠ADB>∠CDE.
点评:本题很简单,考查的是三角形外角与内角的关系,即三角形的一个外角大于任何一个和它不相邻的内角.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图,已知在△ABC中,AD、AE分别是BC边上的高和中线,AB=9cm,AC=7cm,BC=8m,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在△ABC中,BD为∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD于M,PN⊥CD于N,求证:PM=PN.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在△ABC中,AB=AC,∠A=100°,CD是∠ACB的平分线.
(1)∠ADC=
60°
60°

(2)求证:BC=CD+AD.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在△ABC中,∠B与∠C的平分线交于点P.当∠A=70°时,则∠BPC的度数为
125°
125°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在△ABC中,CD=CE,∠A=∠ECB,试说明CD2=AD•BE.

查看答案和解析>>

同步练习册答案