精英家教网 > 初中数学 > 题目详情

已知△ABC为等边三角形,D为AB上任意一点,连接CD,以BD为一边,在△ABC的外部作等边三角形BDE,连接AE.求证:CD=AE.

证明:等边三角形各边长相等,各内角为60°
∴BE=BD,BA=BC,∠EBA=∠DBA=60°,
∴△ABE≌△CDB(SAS),
∴CD=AE.
分析:根据等边三角形各边长相等、各内角为60°的性质,可得BE=BD,BA=BC,∠EBA=∠DBA=60°,可以证明△ABE≌△CDB,即可得CD=AE.
点评:本题考查了全等三角形的证明和全等三角形对应边相等的性质,等边三角形各边长相等、各内角为60°的性质,本题中求证△ABE≌△CDB是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知△ABC是等边三角形,⊙O为它的外接圆,点P是
BC
上任一点.
(1)图中与∠PBC相等的角为
 

(2)试猜想出三条线段PA、PB、PC之间的数量关系,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

三角形外心我们可以理解为:到三角形三个顶点距离相等的点称三角形的外心,由此,我们定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.
举例:如图1,若PA=PB,则点P为△ABC的准外心.
(1)应用:如图2,CD为等边三角形ABC的高,准外心P在高CD上,且PD=
12
AB,求∠APB的度数.
(2)探究:已知△ABC为直角三角形,斜边BC=5,AB=3,准外心P在AC边上,试探究PA的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知D是等边△ABC外一点,∠BDC=120°,则AD、BD、DC三条线段的数量关系为
AD=BD+DC
AD=BD+DC

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知△ABC是等边三角形,⊙O为它的外接圆,点P是数学公式上任一点.
(1)图中与∠PBC相等的角为______;
(2)试猜想出三条线段PA、PB、PC之间的数量关系,并证明.

查看答案和解析>>

科目:初中数学 来源:2009年广东省广州市花都区中考数学二模试卷(解析版) 题型:解答题

(2009•花都区二模)已知△ABC是等边三角形,⊙O为它的外接圆,点P是上任一点.
(1)图中与∠PBC相等的角为______;
(2)试猜想出三条线段PA、PB、PC之间的数量关系,并证明.

查看答案和解析>>

同步练习册答案