精英家教网 > 初中数学 > 题目详情

当________或________时,函数y=x2-x-2的函数值大于0.

x<-1    x>2
分析:函数y=x2-x-2与x轴的交点坐标为(2,0),(-1,0),画函数图象得:
∴当x<-1或x>2时,函数y=x2-x-2的函数值大于0.
解答:当x<-1或x>2时,函数y=x2-x-2的函数值大于0.
点评:此题考查了学生的图形分析能力,解此题的关键是要注意利用数形结合思想.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

阅读以下的材料:
如果两个正数a,b,即a>0,b>0,则有下面的不等式:
a+b
2
ab
当且仅当a=b时取到等号
我们把
a+b
2
叫做正数a,b的算术平均数,把
ab
叫做正数a,b的几何平均数,于是上述不等式可表述为:两个正数的算术平均数不小于(即大于或等于)它们的几何平均数.它在数学中有广泛的应用,是解决最大(小)值问题的有力工具,下面举一例子:
例:已知x>0,求函数y=x+
4
x
的最小值.
解:另a=x,b=
4
x
,则有a+b≥2
ab
,得y=x+
4
x
≥2
x•
4
x
=4
,当且仅当x=
4
x
时,即x=2时,函数有最小值,最小值为2.
根据上面回答下列问题
①已知x>0,则当x=
 
时,函数y=2x+
3
x
取到最小值,最小值为
 

②用篱笆围一个面积为100m2的矩形花园,问这个矩形的长、宽各为多少时,所用的篱笆最短,最短的篱笆是多少?
③已知x>0,则自变量x取何值时,函数y=
x
x2-2x+9
取到最大值,最大值为多少?

查看答案和解析>>

科目:初中数学 来源:2012年初中毕业升学考试(四川达州卷)数学(带解析) 题型:解答题

问题背景
若矩形的周长为1,则可求出该矩形面积的最大值.我们可以设矩形的一边长为x,面积为s,则s与x的函数关系式为: ,利用函数的图象或通过配方均可求得该函数的最大值.
提出新问题
若矩形的面积为1,则该矩形的周长有无最大值或最小值?若有,最大(小)值是多少?
分析问题
若设该矩形的一边长为x,周长为y,则y与x的函数关系式为:,问题就转化为研究该函数的最大(小)值了.
解决问题
借鉴我们已有的研究函数的经验,探索函数的最大(小)值.
(1)实践操作:填写下表,并用描点法画出函数的图象:

x
···



1
2
3
4
···
y
 
 
 
 
 
 
 
 
 
 

(2)观察猜想:观察该函数的图象,猜想当x=        时,函数有最   值(填
“大”或“小”),是         .
(3)推理论证:问题背景中提到,通过配方可求二次函数的最大值,请你尝试通过配方求函数的最大(小)值,以证明你的猜想. 〔提示:当时,

查看答案和解析>>

科目:初中数学 来源:2012年初中毕业升学考试(四川达州卷)数学(解析版) 题型:解答题

问题背景

若矩形的周长为1,则可求出该矩形面积的最大值.我们可以设矩形的一边长为x,面积为s,则s与x的函数关系式为: ,利用函数的图象或通过配方均可求得该函数的最大值.

提出新问题

若矩形的面积为1,则该矩形的周长有无最大值或最小值?若有,最大(小)值是多少?

分析问题

若设该矩形的一边长为x,周长为y,则y与x的函数关系式为:,问题就转化为研究该函数的最大(小)值了.

解决问题

借鉴我们已有的研究函数的经验,探索函数的最大(小)值.

(1)实践操作:填写下表,并用描点法画出函数的图象:

 

x

···

1

2

3

4

···

y

 

 

 

 

 

 

 

 

 

 

 

(2)观察猜想:观察该函数的图象,猜想当x=         时,函数有最    值(填

“大”或“小”),是          .

(3)推理论证:问题背景中提到,通过配方可求二次函数的最大值,请你尝试通过配方求函数的最大(小)值,以证明你的猜想. 〔提示:当时,

 

查看答案和解析>>

科目:初中数学 来源:《第27章 二次函数》2009年单元检测试卷(1)(解析版) 题型:填空题

        时,函数y=x2-x-2的函数值大于0.

查看答案和解析>>

同步练习册答案